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ABSTRACT

—

_>"This paper presents approximation theory for the linear—quadratic~
Gaussian optimal control problem for flexible structures whose distributed
models have bounded 1input and output operators. The main purpose of the
theory is to guide the design of finite dimensional compensators that approxi-
mate closely the optimal compensator separates into an optimal 1linear-
quadratic control problem 1lies in the solution to an iInfinite dimensional
Riccati operator equation. The approximation scheme in the paper approximates
the infinite dimensional LQG problem with a sequence of finite dimensional LQG
problems defined for a sequence of finite dimensional, usually finite element
or modal, approximations of the distributed model of the structure. Two
Riccati matrix equations determine the solution to each approximating problem.

The finite dimensional equations for numerical approximation are de-
veloped, including formulas for converting matrix control and estimator gains
to their functional representation to allow comparison of gains based on dif-
ferent orders of approximation. Convergence of the approximating control and
estimator gains and of the corresponding finite dimensional compensators is
studied. Also, convergence and stability of the closed-loop systems produced
with the finite dimensional compensators are discussed. - The convergence
theory is based on the convergence of the solutions of the finite dimensional
Riccati equations to the solutions of the infinite dimensional Riccati equa-
tions. A numerical example with a flexible beam, a rotating rigid body, and a
lumped mass is given.
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1. Introduction

Recent years have seen increasing research in active control of flexible
structures. The primary motivation for this research is control of large
flexible aerospace structures, which are becoming larger and more flexible at
the same time that their performance requirements are becoming more stringent.
For example, 1in tracking and other applications, satellites with large anten-
nae, solar collectors and other flexible components must perform fast slew
maneuvers while maintaining tight control over the vibrations of their flexi-
ble elements. Both of these conflicting objectives can be achieved only with
a sophisticated controller. There are applications also to control of robotic
manipulators with flexible links, and possibly to stabilization of large civil

engineering structures such as long bridges and tall buildings.

The first question that must be answered when designing a controller for
a flexible structure is whether a finite dimensional model is sufficient as a
basis for a controller that will produce the required performance, or is a
distributed model necessary? While some structures can be modeled well by a
fixed number of dominant modes, there are structures whose flexible character
can be captured sufficiently for precise control only by a distributed model.
Still others -— perhaps most of the aerospace structures of the future -- can
be modeled sufficiently for control purposes by some finite dimensional
approximation, but an adequate approximation may be impossible to determine
before design of the controller, or compensator. This paper deals with struc-
tures that are flexible enough to require a distributed model in the design of

an optimal LQG compensator.




The linear-quadratic-gaussian optimal control problem for distributed, or
infinite dimensional, systems is a generalization to Hilbert space of the now
classical LQG problem for finite dimensional systems. The solution to the
infinite dimensional problem yields an infinite dimensional state-estimator-
based compensator, which is optimal in the context of this paper. By a
separation principle [Bl, C4], the problem reduces to a deterministis linear—
quadratic optimal control problem and an optimal estimation, or filtering,
problem with gaussian white noise. In infinite dimensions, the control system
dynamics are represented by a semigroup of bounded linear operators instead of
the matrix exponential operators in finite dimensions, and the plant noise
process may be an infinite dimensional random process. The solutions to both
the control and filtering problems involve Riccati operator equations, which
are generalizations of the Riccati matrix equations in the finite dimensional
case. Current results on the infinite dimensional LQG problem are most com—
plete for problems where the input and measurement operators are bounded, as
this paper requires throughout. This boundedness also permits the strongest
approximation results here. For related control problems with unbounded input

and measurement, see [C3, C5, L1, L2].

Our primary objective in this paper is to approximate the optimal infin-
ite dimensional LQG compensator for a distributed model of a flexible struc-
ture with finite dimensional compensators based on approximations to the
structure, and to have these finite dimensional compensators produce near
optimal performance of the closed-loop system. We discuss how the gains that
determine the finite dimensional compensators converge to the gains that

determine the infinite dimensional compensator, and we examine the sense in




which the finite dimensional compensators converge to the infinite dimensional
compensator. With this analysis, we can predict the performance of the
closed-loop system consisting of the distributed plant and a finite dimen-

sional compensator that approximates the infinite dimensional compensator.

Our design philosophy is to let the convergence of the finite dimensional
compensators indicate the order of the compensator that is required to produce
the desired performance of the structure. The two main factors that govern
rate of convergence are the desired performance (e.g., fast response) and the
structural damping. We should note that any one of our compensators whose
order is not sufficient to approximate the infinite dimensional compensator
closely will not in general be the optimal compensator of that fixed order;
i.e., the optimal fixed-order compensator that would be constructed with the
design philosophy in [B7, B8]l. But as we increase the order of approximation
to obtain convergence, our finite dimensional compensators become essentially

identical to the compensator that is optimal over compensators of all orders.

An important question, of course, is how large a finite dimensional com-
pensator we must use to approximate the infinite dimensional compensator. In
[G6, G7, G8, Mi]l, we have found that our complete design strategy yields com-
pensators of reasonable size for distributed models of complex space struc—
tures. This strategy in general requires two steps to obtain an implementable
compensator that is essentially identical to the optimal infinite dimensional
compensator: the first step determines the optimal compensator by letting the
finite dimensional compensators converge to it; the second step reduces, if
possible, the order of a large (converged) approximation to the optimal com-

pensator. The first step, which is the one involving control theory and
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approximation theory for distributed systems, is the subject of this paper.

For the second step, a simple modal truncation of the large compensator some—
times is sufficient, but there are more sophisticated methods in finite dimen
sional control theory for order reduction. For example [G8, Ml], we have

found balanced realizations [M2] to work well for reducing large compensators.

The approximation theory in this paper follows from the application of
approximation results in [B6, G3, G4] to a sequence of finite dimensional
optimal LQG problems based on a Ritz-Galerkin approximation of the flexible
structure. For the optimal linear—quadratic control problem, the approxima-—
tion theory here is a substantial improvement over that in [Gl] because here
we allow rigid-body modes, more general structural damping (including damping
in the boundary), and much more general finite element approximations. These
general izations are necessary to accommodate common features of complex space
structures and the most useful finite element schemes. For example, we write
the equations for constructing the approximating control and estimator gains
and finite dimensional compensators in terms of matrices that are built
directly from typical mass, stiffness and damping matrices for flexible struc-

tures, along with actuator influence matrices and measurement matrices.

For the estimator problem, this paper presents the first rigorous approx-

imation theory. (We have used less complete versions of the results in previ-

ous research [G6, G7, G8, M1]l.) As in the finite dimensional case, the infin -
ite dimensional optimal estimation problem is the dual of the infinite dimen
sional optimal control problem, and the solutions to both problems have the
same structure. Because we exploit this duality to obtain the approximation o
theory for the estimation problem from the approximation theory for the

4




optimal control problem, the analysis in this paper is almost entirely deter—
ministic. We discuss the stochastic interpretation of the estimation problem
and the approximating state estimators briefly, but we are concerned mainly

with deterministic questions about the structure and convergence of approxima-
tions to an infinite dimensional compensator and the performance —- especially
stability —— of the closed—-loop systems produced by the approximating compen—

sators.

Next, an outline of the paper should help. The paper has two main parts,
which correspond roughly to the separation of the optimal LQG problem into an
optimal linear—quadratic regulator problem and an optimal state estimation
problem. The first half, Sections 2 through 6, deal with the control system
and the optimal regulator problem. Sections 7 through 10 treat the state
estimator and the compensator that is formed by applying the control law of

the first half of the paper to the output of the estimator.

Section 2 defines the abstract model of a flexible structure and the
energy spaces to be used throughout the paper. We assume a finite number of
actuators, since this is the case in all applications, and we assume that the
actuator influence operator is bounded. Section 2 also establishes certain
mathematical properties of the opemloop system that are useful in control and
approximation. To our knowledge, the exponential stability theorem in Section
2.3 is a new result, and we find it interesting that such a simple Lyapunov

functional accommodates such a general damping model.

Section 3 discusses the linear—quadratic optimal control problem for the

distributed model of the structure and establishes some estimates involving




bounds on solutions to infinite dimensional Riccati equations and open—loop
and closed-loop decay rates. We need these estimates for the subsequent
approximation theory. To get the approximation theory for the estimation
problem, we have to give certain results on the control problem in a more gem
eral form than would be necessary were we interested only in the control prob-
lem for flexible structures. Therefore, in Section 3, as in Sections § and 7,
we first give some generic results applicable to the LQG problem for a variety
of distributed systems and then apply the generic results to the control of

flexible structures.

Because we assume a finite number of actuators and a bounded input opera-
tor, the optimal feedback control law consists of a finite number of bounded
linear functionals on the state space, which is a Hilbert space. This means
that that the feedback law can be represented in terms of a finite number of
vectors, which we call functional control gains, whose inner products with the
generalized displacement and velocity vectors define the control law. For any
finite-rank, bounded linear feedback law for a control system on a Hilbert
space, the existence of such gains is obvious and well known. A functional
control gain for a flexible structure will have one or more distributed com-
ponents, or kernels, corresponding to each distributed component of the struc-
ture and scalar components corresponding to each rigid component of the struc-

ture.

We introduce the functional control gains at the end of Section 3, and we
introduce analcgous functional estimator gains in Section 7. The functional
gains play a prominent roll in our analysis. They give a concrete representa-

tion of the infinite dimensional compensator and provide a criterion for con-
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vergence of the approximating finite dimensional compensators.

We develop the approximation scheme for the control problem in Section 4.
The idea is to solve a finite dimensional linear—quadratic regulator problem
for each of a sequence of Ritz-Galerkin approximations to the structure. We
develop the approximation of the structure in Section 4.1 and prove conver—
gence of the approximating opemloop systems. The approximation scheme
includes most finite element approximations of flexible structures. For con-
vergence, we use the Trotter-Kato semigroup approximation thecrex, which was
used in optimal open—loop control of hereditary systems in [B5] and has been
used in optimal feedback control of hereditary, hyperbolic and parabolic sys—
tems in [B6, G1, G3] and other papers. The usual way to invoke Trotter—Kato
is to prove that the resolvents of the approximating semigroup generators con-
verge strongly. To prove this, we introduce an inner product that involves
both the straimenergy inner product and the damping functional, and show that
the resolvent of each finite dimensional semigroup generator is the projec-
tion, with respect to this special inner product, of the resolvent of the ori-
ginal semigroup generator onto the approximation subspace. The idea works as
well for the adjoints of the resolvents, and when the openloop semigroup gen-
erator has compact resolvent, it follows from our projection that the approxi-

mating resolvent operators converge in norm.

In Section 4.2, we define the sequence of finite dimensional optimal con-

trol problems, whose solutions approximate the solution to the infinite dimen
sional problem of Section 3. The solution to each finite dimensional problem
is based on the solution to a Riccati matrix equation, and we give formulas

for using the solution to the Riccati matrix equation to compute approxima—




tions to the functional control gains as linear combinations of the basis vec-

tors.

Section 5.1 summarizes some generic convergence results from [B6, G3, G4]
on approximation of solutions to infinite dimensional Riccati equations. Sec-
tion 5.2 applies these generic results to obtain sufficient conditions for
convergence —— and nonconvergence —-— of the solutions of the approximating
optimal control problems in Section 4.2. A main sufficient condition for con-
vergence is that the structure have damping, however small, that makes all
elastic vibrations of the open—1loop system exponentially stable. This is a
necessary condition if the state weighting operator in the control problem is

coercive.

In Section 6, we present an example in which the structure consists of an
Euler—Bernoulli beam attached on one end to a rotating rigid hub and on the
other end to a lumped mass. We emphasize the fact that we do not solve, or
even write down, the coupled partial and ordinary differential equations of
motion. For both the definition and numerical solution of the problem, only
the kinetic and strain energy functionals and a dissipation functional for the
damping are required. We show the approximating functional control gains
obtained by using a standard finite element approximation of the beam, and we
discuss the effect on convergence of structural damping and of the ratio of
state weighting to control weighting in the performance index. As suggested
by a theorem in Section 5, the functional gains do not converge when no struc-

tural damping is modeled.

In Section 7, we begin the theory for closing the loop on the control

system. We assume a finite number of bounded linear measurements and
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construct the optimal state estimator, which is infinite dimensional in gen—
eral. The gains for this estimator are obtained from the solution to an
infinite dimensional Ricecati equation that has the same form as the infinite
dimensional Riccati equation in the control problem. We call these gains

functional estimator gains because they are vectors in the state space.

Since the approximation issues that this paper treats are fundamentally
deterministic, we make the paper self contained by defining the infinite
dimensional estimator as an observer, although the only justification for cal-
ling this estimator and the corresponding compensator optimal is their
interpretation in the context of stochastic estimation and control. We dis-
cuss the stochastic interpretation but do not use it. We say estimator and
observer interchangeably to emphasize the deterministic definition of the

estimator here.

With the optimal control law of Section 3 and the optimal estimator of
Section 7, we construct the optimal compensator, which also is infinite dimen—
sional in general. The transfer function of this compensator is irrational,
but it is still an m(number of actuators) p(number of sensors) matrix func-
tion of a complex variable, as in finite dimensional control theory. The
optimal closed-loop system consists of the distributed model of the structure

controlled by the optimal compensator.

Approximation of the optimal compensator is based on approximating the
infinite dimensional estimator with the sequence of finite dimensional estima-
tors defined in Section 8.1. The gains for the approximating estimators are
given in terms of the solutions to finite dimensional Riccati equations that

approximate the infinite dimensional Riccati equation in Section 7. Although
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.I def'ined as observers, these finite dimensional estimators can be interpreted
as Kalman filters, as shown in Section 8.2. 1In Section 8.3, we give formulas
for finite dimensional functional estimator gains that approximate the func-
- tional estimator gains of Section 7. These approximating estimator gains

indicate how closely the finite dimensional estimators approximate the infin—

ite dimensional estimator. In Section 8.4, we apply the Riccati equation

approximation theory of Section 5 to describe the convergence of the finite

dimensional estimators.

Most of the results in Section 8 are analogous to results for the control
problem and follow from the same basic approximation theory, but certain
differences require careful analysis. There is an important difference in the
way that the Riccati matrices to be computed are defined in terms of the fin
ite dimensional Riccati operators. Indeed, the Riccati matrix equations to tbe
solved numerically might seem incorrect at first. To demonstrate that the
finite dimensional estimators that we define in Section 8.1 are natural
approximations to the optimal infinite dimensional estimator, we show in Sec-
tion 8.2 that each finite dimensional estimator is a Kalman filter for the
corresponding finite element approximation of the flexible structure. The
brief discussion in Section 8.2 is the only place in the paper where stochas-
tic estimation theory is necessary, and none of the analysis in the rest of

the paper depends on this discussion.,

In Section 9.1, we apply the nth control law of Section 4 to the output
of the nth estimator to form the nth compensator. (The order of approximation
is n.) The nth closed-loop system consists of the distributed model of the

structure controlled by the nth compensator. Since each finite dimensional

10




estimator is realizable, the nth compensator and the nth closed-loop system
are realizable. In Section 9.2, we discuss how the scquence of realizable
closed-loop systems approximates the optimal closed-loop system. Probably the
most important question here is whether exponential stability of the optimal
closed-loop system implies exponential stability of the nth closed-loop system
for n sufficiently large. We have been able to prove this only when the
approximation basis vectors are the natural modes of undamped free vibration
and these modes are not coupled by structural damping. That this stability
result can be generalized is suggested by the results in Section 9.3, which
describe how the transfer functions of the finite dimensional compensators

approximate the transfer function of the optimal compensator.

In Section 10, we complete the compensator design for the example in Sec-
tion 6. Assuming that white noise corrupts the single measurement and that
distributed white noise disturbs the structure, we compute the gains for the
finite dimensional estimators and show the functional estimator gains. As in
the control problem, the functional gains do not converge when no damping is
modeled. We apply the control laws computed in Section 6 to the output of the
estimators in Section 10 to construct the finite dimensional compensators, and
we show the frequency response of these compensators. As predicted by Section
9.3, the frequency response of the nth compensator converges to the frequency
response of the optimal infinite dimensional compensator as n increases. 1In
Section 10.3, we discuss the structure and dimension of the finite dimensional

compensator that should be implemented.

We conclude in Section 11 by discussing where the approximation theory
presented in this paper is most complete and what further results would be

most important.

11
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2. The Control System

We consider the system

X(6) + Dx(t) + Agx(t) = Bu(t), t > 0,
(2.1)
where x(t) is in a real Hilbert space H and u(t) is in R® for some finite m.
The linear stiffness operator A, is densely defined and selfadjoint with com-
pact resolvent and at most a finite number of negative eigenvalues. We will
postpone discussion of the damping operator Do momentarily, except to say that
it is symmetric and nonnegative. The input operator Bo is a linear operator

from Rm to H, hence bounded.

By natural modes., we will mean the eigenvectors ¢J of the eigenvalye
problem

ECL R (2.2)

From our hypotheses on AO, we know that these eigenvalues form an infinitely
increasing sequence of real numbers, of which all but a finite number are

positive. Also, the corresponding eigenvectors are complete in H and satisfy

<di. ¢j>H = (Bgpy, ¢j>H = 0, 14# 3.

(2.3)

(These properties of the eigenvalue problem (2.2) are standard. See, for

example, [Bl1], [Kl1].) For )'j >0, wy = " )'j is a patural freguency.




Remark 2.1. Our analysis includes the system

Mpx(t) + Dyx(t) + Byx(t) = Bu(t), t>o0, 21ty

where the mass operator "0 is a selfadjoint, bounded and coercive linear
operator on a real Hilbert space H,. The operators A,, By and D, in (2.1')
have the same properties with respect to H, that the corresponding operators
in (2.1) have with respect to H. To include (2.1') in our analysis, we need
only take H to be Hj with the norm-equivalent inner product ¢y =

<Mo°.'>Ho. and multiply (2.1') on the left by Hgl. In H, the operator MEIAO

is selfadjoint with compact resolvent, and M(-,IDO is symmetric and nonnegative.
With no loss of generality then, we will refer henceforth only to (2.1) and

assume that the H-inner product accounts for the the mass distribution. (J
2.1 The Energy Spaces and the First-order Form of the System

The Elastic-Strain-Eneray Space V and Total-Epergy Space E

We choose a bounded, selfadjoint linear operator Al on H such that ’Ko =

AO + A, is coercive; i.e., there exists p > 0 for which

~ 2 ~
(on.x>H 2 p||x||H. X e D(AO) = D(Ao).
(2.4)
Since Ao is bounded from below, there will be infinitely many such Al's.
In applications like our example in Section 6, it is natural to select for Al

an operator whose null space is the orthogonal complement (in H) of the eigen

space of Ao corresponding to nonpositive eigenvalues. Obviously, any A1 that

makes KO coercive must be positive definite on the nonpositive eigenspace of

Ay
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With A, chosen, we define the Hilbert space V to be the completion of
D(Ao) with respect to the inner product (vl.v2>v = <on1.v2>n. v, and
_ a2 _ o x1/2 ~1/2
v, & D(Ao). Note that V = D(A0 ) and <v1.v2>V = <A0 vl.Ao v2>H. (Since A1
is a bounded operator on H, different choices of A1 yield V’'s with equivalent

norms, thus containing the same elements).
In the usual way, we will use the imbedding
v€H = HHEQ Vv,

where the injections from V into H and from B into V' are continuous with

dense ranges. We denote by /\v the Riesz map from V onto its dual V'; i.e.,

<v’v ) = (A V )V, V ,V !-: v.
1’V V'l 1 (2.5)
~
Then Ao is the restriction of /\v to D(4g) in the sense that
(Avvl)v = (V.K0V1>H. vl D(Ao)p vV e v- (2 6)

Now we define the total energy space E = V X H, noting that when Ao is
coercive and x(t) is the solution to (2.1), then ||(x(t).:.:(t))||§: is twice the
total energy (kinetic plus potential) in the system. We want to write (2.1)
as a first—-order evolution equation on E. To to this, we must determine the
appropriate semigroup generator for the open—1loop system. We will derive this
generator by constructing its inverse explicitly, and then we will try to con-
vince the reader that we do have the appropriate open-loop semigroup genera-
tor. The approach seems mathematically efficient, and we will need the
inverse of the generator for the approximation scheme., First, we must state

our precise hypotheses on damping and discuss its representation.
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Ihe Damping Functiopnal and Operator

Actually, we do not require an operator D, defined from some subset of H
into H. Rather, we assume only that there exists a damping functional
d (v,,v,): V %X VR
0 »
1"72 (2.7)

such that dj is bilinear, symmetric, continuous (on VX V) and nonnegative.

If we have a symmetric, nonnegative damping operator DO defined on D(Ag)
such that D, is bounded relative to A;, then (DgVvy,Vy>y defines a bilinear,
symmetric, bounded, nonnegative functional on a dense subset of VX V, In

this case, the unique extension of this functional to VX V is do, (That DO

being Ao—bounded implies continuity of (Do°.'>H with respect to the V-norm

follows from [Kl1, Theorem 4.12, p. 2921.)

Under our hypotheses on do, there is a unique bounded linear operator AD

from V into V' such that

dal(v,v.) = (Awv,))v, v,,velV,
0 1 D1 1 (2.8)
The operator (A;IAD) is then a bounded linear operator from V to V, and
(A;lAD) is selfadjoint (on V) because d,; is symmetric. Also
d.(v,vy) = <AZIA v > AT v, v, vioveV
0" "'1 v 'p1y vV D17y, 1’ *
(2.9)
Remark 2.2. We chose to begin our description of the control system model

with (2.1) because its form is familiar in the context of flexible structures.
The stiffness operator AO’ for example, 1s the infinite dimensional analogue
of the stiffness matrix in finite dimensional structural analysis. In appli-

cations l1ike the example in Section 6, though, it is often easier to begin
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with a strain-energy functional fram which the ccrrect strainenergy inner
product for V is obvious. The stiffness operator is defined then in terms of
the Riesz map for V (see [S3] for this approach), rather than V being defined
in terms of the stiffness operator; specifically, ﬁb is defined by (2.6) with
D(Kb) = A;IH. Either way, the relationship between AO and V is the same. But
the only thing that needs to be computed in applications is the V-inner pro-

duct; an explicit Ay need not be written down. O

Ihe Semigroup Geperator

We define A Y ¢ L(E,E) by
-1 ~-1
w1 Ay Ap Ay
I 0 *

(2.10)
This operator is clearly one—to-one, and its range is dense, since V is dense

in H and D(Ao) is dense in V. Now, we take

= @&hHY1,
(2.11)
Direct calculation of the inner product shows
1 v v
<A , >)a = -=dg(h,h),
h' h'E 0 (2.12)

so that X is dissipative with dense domain. Also, since D(K—l) = E, R is max-
imal dissipative by [Gl, Theorem 2.1]. Therefore, z generates a Co—

contraction semigroup on E.

Finally, the open-loop semigroup generator is
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~
A= %+ [:1 g] p(v) = oM,
(2.13)
where A1 is the bounded linear operator discussed above. With
B = [g] ¢ LGB, E),
0 (2.14)
the first-order form of (2.1) is
z(t) = Az(t) + Bu(t), t>0
(2.15)

where z = (x,;t) e E.

To see that A is indeed the appropriate opemloop semigroup generator,
suppose that A, is coercive (so that A; = 0) and that we have a symmetric,
nonnegative Ao—bounded damping operator Do. Then the appropriate generator

should be a maximal dissipative extension of the operator

(o} 0 I [0}

o
It is shown in [Gl, Section 2] that A has a unique maximal dissipative exten-

o
sion, and it can be shown easily that the A defined above is an extension of A

after noting that, in the present case,

..1 _
M AD by = 4 o
(2.17)
We should note that Showalter ([S3, Chapter VI] elegantly derives a
semigroup generator for a class of second-order systems that includes the

flexible-structure model here. The presentation here is most useful for our

approximation theory because of the explicit construction of the inverse of

17




the semigroup generator. For the purposes of this paper, we do not need to
characterize the operator A itself more explicitly, but we should make the

following points.

~-1
First, from A we see

D(A)=((x,x): x e V, x + /\";IAD:.c e D(ag)].

(2.18)
In many applications, especially those involving beams, the ’’‘natural boundary
conditions’’ can be determined from (2.18) and the boundary conditions included
in the definition of DAO). In the case of a damping operator that is bounded
relative to :%/2. D(4) = D(Ao)xV. If the damping operator is bounded rela-

tive to A(‘; for p < 1, then A has compact resolvent.

In many structural applications, the opemrloop semigroup is analytic,
although this has been proved only for certain important cases. Showalter
obtains an analytic semigroup when the damping functional is V-coercive; for
example, when there exists a damping operator DO that is both Ao-bounded and
as strong as Ao. Such a damping operator results from the Kelvin-Voigt
viscoelastic material model. Also, it can be shown that the semigroup is ana-
lytic for a damping operator equal to coA(’)l for 1/2 { p £ 1 and cy 2 positive
scalar. The case u = 1/2, which produces the same damping ratio in all modes,
is especially common in structural models, and Chen and Russell [Cl] have
shown that the semigroup is analytic for a more general class of damping

operators involving A%lz.

Finally, we can guarantee that the opemloop serigroup generator is a
spectral operator (i.e., its eigenvectors are complete in E) only for a damp-

ing operator that is a linear combination of an H-bounded operator and a




fractional power of Ao. However, nowhere do we use or assume anything about
the eigenvectors of either the openloop or the closed-loop semigroup genera-
tor. The matural modes —- of undamped free vibration -- in (2.2) are always

complete in both H and V.

2.2 The Adjoint of %

- -8
Since (AVII\D) is selfadjoint on V, direct calculation shows that T =

— * .
@A L* — the adjoint of T witn respect to the E-inner product -- is

-1 -1
Tt - AN K
~I 0 *

(2.19)
* -— - -
Then X = a * ) 1. Having‘x * explicitly facilitates proving strong conver-

gence for approximating adjoint semigroups.
2.3 Exponential Stability

The following theorem says that, if there are no rigid-body modes and if
the damping is coercive (basically, all structural components have positive
damping), then the open-loop system is uniformly exponentially stable. That
the decay rate given depends only on the lower bound for the stiffness opera-
tor and the upper and lower bounds for the damping functional is essential for
convergence results for the approximating optimal control problems of subse-
quent sections. The theorem is a generalization of Theorem 6.1 of [Gl] to
allow more general damping, but the proof is entirely different and much
nicer. The current proof uses an explicit Lyapunov functional for the homo~
geneous part of the system in (2.15). Recall that T(°) is the open-1loop semi-

group, with generator A, and E is the total energy space V X H.
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Iheorem 2.3. Suppose that A, and d, are H-coercive. Let p be the positive

constant in (2.4), and let 60 and 61 be positive constants such that

2 2
SolIvily £ dg(vev) < 8y vty VeV

(2.20)
Then
.2 1/2 2 .2
HT() )| £ (1 r—+ss/2) expl- t/( ﬁ.+s)l , t20.
(2.21)
Proof. For y > max{ '%; 52-}. define Q e L(E) as
0
(VI+A;1AD) Aal
- I yIy-
(2.22)

Since (A;%AD) is selfadjoint and nonnegative on V, Q is selfadjoint and coer-

cive on E. Define the functional p(°) on E by

_ 2 » 2 .
p(z) = <Qz,2>p = r(x]ly + 'lxllﬁ) + 24x, X0 + do(x,x),
(2.23)
where 2z = (x.;t). From (2.4), we have
2iogl ¢ Z xR < gliziig
(2.24)
so that
2 - 2
(@@ llzllg & P & P zng
(2.25)
with
1 -1
p = (y+ +8,) "o
71 (2.26)
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Next take z = (X,X) ¢ D(A) and set A(x,x) = (y,y) ¢ E, or

0 = Ay = (AP .

(2.27)
Note x = y ¢ V. Now,
Qhz,2>p = QYY) A Ny =
- <Ay - Ay Ayt 2 + iy
= - [||x||§ + 1do(x.x) - lellgl-
(2.28)
From (2.20) then,
Qhz, 2>, ¢ - [11x]13 + (-1 [1xI12] < 112112
E v 0 v E’ (2.29)

Therefore p(°) is a Lyapunov functional, and the theorem follows from (2.25),

(2.26) and (2.29), with vy = &+ 33— . O

" %
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3. The Optimal Control Problem

Subsection 3.1 presents some preliminary definitions and results for the
optimal linear—quadratic regulator problem on an arbitrary real Hilbert space.
These results are generic in the sense that the Hilbert space E is not neces-
sarily the energy space of Section 2, and the operators A, B, etc., do not
necessarily represent an abstract flexible structure as in Section 2. 1In the
second half of the paper, having such generic results will allow us to obtain
the approximation theory for the infinite dimensional state estimator from the
analogous results for the control problem. Subsection 3.2 gives some impor-
tant implications of the general results for the case where the control system

is that defined in Section 2.

3.1 The Generic Optima:r Regulator Problem

Let a linear operator A generate a Co-semigpoup T(t) on a real Hilbert
space E, and suppose B ¢ L(R®,E), Q e L(E,E) and R ¢ L(R™), with Q nonnegative
and selfadjoint and R positive definite and symmetric. The optimal control
problem opn E is to choose the control u e L2 (0,o;B®) to minimize the cost

functional

J(z(0),u) = f ((Qz(t).z(t))E + (Ru(t).u(t)>Rm)dt.
0
(3.1)

where the state z(t) is given by

t
z(t) = T(t)z(0) + [fT(t-n)Bulnl)dnq, t 2> O.
0 (3.2)
Defipition 3.1. A function u e L,(0,»;U) is an admissible control for the
22




initial state z, or simply an admissible control for 2z, if J(z,u) is finite;
i.e., if the state z(t) corresponding to the control u(t) and the initial con-

dition z(0) = z is in Lz(o,w;E).

Definition 3.2 Let the operators A, B, Q, and R be as defined above. An
operator Il in L(E) is a solution of the Riccati algebraic equation if IT maps
the domain of A into the domain of A. and satisfies the Riccati algebraic
equation
2*oD + ma - meRIB'O o+ a = o.

(3.3)
Theorem 3.3 (Theorems 4.6 and 4.11 of [G4]). There exists a nonnegative sel-
fadjoint solution of the Riccati algebraic equation if and only if, for each
z ¢ E, there is an admissible control for the initial state z. If II is the

minimal nonnegative selfadjoint solution of (3.3), then the unique control

u( ) which minimizes J{(z,u) and the corresponding optimal trajectory z( ) are

given by
att) = -R18* mz(t)
(3.4)
and
Z(t) = S(t)Z;
(3.5)
. - -1 h
where S(°) is the semigroup generated by A-BR "BI. Also,
Jlz,u) = min J(z,v) = I z,z>E
v (3.6)

f, for each initial state and admissible control.
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——v

lim I|Z(t)ll = 0,
te (3.7)

there exists at most one nonnegative selfadjoint solution of (3.3). If Q is
coercive, (3.7) holds for each initial state and admissible control and S(- )

is uniformly exponentially stable. [

We will refer to T(-) as the opepn—looD semigroup and to S(+) as the

optimal closed-loop semigroup.

To prepare for the convergence analysis in Sections 5 and 9, we must
present now some rather arcane estimates for the decay rate of the closed-loop

system in the optimal control problem.

Theoren 3.4 Suppose that the open—loop semigroup T(+) satisfies

alt

Tl ¢ M e , t 2 0,
(3.8)
for positive constants M1 and a;» that II is the minimal nonnegative selfad-
Joint solution to (3.3), and that S(t) is the optimal closed-loop semigroup in

Theorem 3.3. If there exists a constant Mo such that, for each z ¢ E,

[olsrzlifat ¢ MO zg + [zl
0 (3.9)

and a constant M!; such that
N on <

Ho (3.10)

then there exist positive constants M2 and a,, which are functions of Mo. M(;.

Ml’ and ay only, such that
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—azt
sl ¢ Me , t 2 0.
(3.11)

Proof. This follows easily from Theorems 2.2 and 4.7 of [ 1. O
Lemma 3.5. Suppose that there exist positive constants M and a such that

Tl < M, ¢ 3 o.

(3.12)
t
If z(0) & E, h & L,y(0,=;E), and z(t) = T(t)z(0) + [ T(t-s)h(s)ds, then
0
- 2
Mz 1? a6 < EE=llz@11 + Gliall | -
0 2 (3.13)

Proof. The result follows from (3.12), the convolution theorem [D1, page 951]

and the triangle inequality. [J

Lemma 3.6. Suppose that E is finite dimensional and that the pair (Q,A) is
observable (in the usual finite dimensional sense). Then there exists a con—

stant M, which is a function of A, B and Q only, such that

Sz 113de < MU (<Qz(t),z(t)dg + [ue) 112)dt,
0 0 (3.14)

where z(t) is given by (3.2).

Proof. The proof, which 1s at most a mild challenge, is based on the fact

that the observability grammian
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t T
Wit)= [ P tqeftyt

0 (3.15)

is coercive for any positive t. [J

The next theorem says, among other things, that if the open-loop control
system decouples into a finite dimensional part that is stabilizable (in the
usual finite dimensional sense) and an infinite dimensional part that is uni-
formly exponentially stable, then the entire system is uniformly exponentially

stabilizable, so that (3.3) has a nonnegative selfadjoint solution.

Theorem 3.7. Suppose that there exists a finite dimensional subspace EOC

D(A) such that Eo and E&L reduce A (and T(t)), and write

M1 By Q1 Q

A = 0 » B = B » Q = - - »
oY) 21 4, %,

{(3.16)

where All and A22 are the restrictions of A to EO and D(A) X E(')L. respectively.

Similarly,

T8 ]

T

(3.17)

Also, suppose that the pair (All.Bll) is stabilizable and that there exist

1]

1
positive constants Ml’ ay and $ such that

' _a]'_t'
Ty ()] < Me , t > 0
22 " (3.18)

and
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max{}|B]}.,}lQ}}} < 8. (3.19)

i) Then there exists F & L(E,R®) such that A~BF generates a uniformly
exponentially stable semigroup on E. Also, (3.3) has a nonnegative selfad-

joint solution, and the minimal such solution satisfies (3.10) with M6 a func-

’ ’
tion of All' Bll' R, Ml’ ey and B only.

i) 1I1f le = 0 and the pair (011. All) is observable, then there exists a
unique nonnegative selfadjoint solution II to (3.3), and there exist positive
1] [
constants M2 and a, —— which depend on A11' By 011, R, Ml’ ay and § only ——
such that the optimal closed-loop semigroup satisfies
-azt

sl < e , t > O.
"2 (3.20)

Proof. 1) To say that (A11'311) is stabilizable means that there exists a
linear operator F11 from E0 to RT such that each eigenvalue of An—BuFl1 has
negative real part. Hence A-BF generates a uniformly exponentially stable
semigroup if F = [Fy; 0], so that there exists an admissible control for each

initial condition in E.

It is easy to write down an upper bound for the performance index in

’ ’
(3.1) in terms of R, B , Ml’ ay and the decay rate of exp( [A11 -Bj; Fyq 1t).

That the M& in (3.10) depends only on Aj1s Byqr R My, ay and p follows then
from the fact that F11 is a function of Aq; and Byq.

ii) Clearly, (3.8) holds with Ml and a, depending only on Ayyr Bygr Mypr oy

and F1 Therefore, we have (3.8) and (3.10) with the bounds depending only

1'
1} 1}
on A11' Byy» 011. R, M, ay and § . Finally, the existence of an Mo for

27




(3.9) which depends only on these parameters follows from using (3.1) and
(3.6) in applying Lemma 3.6 to the part of the system on E0 and then Lemma 3.5
to the part of the system on E(‘)L. Part ii) of this theorem then follows from

Theorem 3.4. (J

Remark 3.8 When we say in Theorem 3.4 that MZ and a, are functions of My, M-
Ml' and oy only, we mean, for example, that for two optimal control problems
on different spaces E, with different operators A, B, etc., if the same con-
stants MO' MO' Ml' and a, work in (3.8)-(3.10) for both problems, then the
same constants M, and e, will work in (3.11) for both problems. Similarly, in

’ ’
Theorem 3.7 ii), as long as EO' A11' Bll‘ Qll' R, H1. ay and p remain the

4

same, the same M, and a, will work in (3.20) even if Ey, Ay,, Byy and Qy,

change. [J

3.2 Application to Optimal Control of Flexible Structures

For the rest of this section, A,, A;, A, T(t), By, and B are the operators

defined in Section 2.1, and E = V X H is the energy space defined there.

Remark 3.9. Theorem 3.7 is useful mainly when all but a finite number of
modes have coercive damping in the openloop system and the damped and
undamped parts of the open—loop system remain orthogonal. This is the case,
for example, with modal damping. The next theorem does not require ortho-
gonality of the damped and undamped parts of the system, but it does require
an independent actuator for each undamped mode. The situation of Theorem 3.10
is typical in aerospace structures: Any elastic component should have some
structural damping, but rigid-body modes are common; for a structure to be

controllable, an actuator is required for each rigid-body mode. [J
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Theorem 3.10. 1) Suppose that A; = B B, and that KB =B + A and Iy = dg +
Al are H-coercive, so that there exist positive constants p , y and B such

that, for all v e V,

Hvll2 2 eliviid,

(3.21)
T 2 pliviid,

(3.22)
~ 2
d (v,v) < vllivlly,
o \) (3.23)

and

max{[[B_||.11Qll.1IRI[} < B

(3.24)

(The V-continuity of 4, implies (3.23).) Then (3.3) has a minimal nonnegative

0
selfadjoint solution II, which satisfies (3.10) with M(; a function of p, ¥

and § only .
ii) Suppose also that

z,25 > pllzllZ, =z eE.
(3.25)

Then the optimal closed-loop semigroup satisfies

t

-a
syl & Me 27, ¢ > o,
(3.26)

where Hz and a, are positive constants depending on p, y and B only.

Proof. 1) The suboptimal control
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ult) = -B[x(t) + x(t)]
(3.27)

produces a closed-loop system with exponential decay at least as fast as that
in Theotem 2.1. The required upper bound in (3.10) follows then from (3.1),

(3.6) and (3.24)
i1) 1In this case, the My in (3.9) is p, and Theorem 3.4 yields the result. [J

Now we will consider the structure of the optimal control law in more

detail. SinceIl ¢ L(E,E) and E = V X H, we can write

116 II1
(3.28)

whereIIO g L(V.V).IIl 8! 'H.V).l]2 e L(H,H), and]]o anclII2 are nonnegative

and selfadjoint. With z = (x.x), as in Section 2, (3.4) becomes

~1.% * °
u(t) = -R B IINx(t) + x(t)].
ot Ty o (3.29)
Since Bj ¢ L(R™, H), we must have vectors bie H, 1 1 { m, such that
m
(3.30)
for
. T m
u = fuy e ul'eR.
1
2 n (3.31)
Aiso, for h ¢ H,
B'h = [<by,hdy <by,hdy °°° <b_,h> 1T
(o} 1 H 2 H m H (3.32)

. .
Since Ile(t) and H2x(t) are elements of H, we see from (3.29) and
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h (3.32) that the components of the optimal control have the feedback form
)
u(t) = —<f,x(t)dy - <giHox(t)dy, 1 = 1,...,m,
! 1 v t H (3.33)
where f'i e V and g ¢ H are given by
S -1
fi = JE],(R )iJ IIle’
(3.34a)
S |
si = JEI(R )1J mbj’ i = l.!..,m.
B (3.34b)
We call f, and g; functional gains.
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4. The Approximation Scheme

4.1 Approximation of the Opemrloop System

Hypothesis 4.1. There exists a sequence of finite dimensional subspaces Vn of
V such that the sequence of orthogonal projections PVn converges V-strongly to
the identity, where PVn is the V-projection onto Vn. Also, each Vn is the

span of n linearly independent vectors eJ.

Since it should cause no confusion, we will omit the subscript n and write

Just ej, keeping in mind that the basis vectors may change from one Vn to

another, as in most finite element schemes. Also, we will refer to the Hil-

bert space E = V X V,, which has the same inner product as E = VX H.

For n 2 1, we approximate x(t) by

n
X (t) = ¥ E,t)e,,
n PR J
=1 (4.1)

where §(t) = (§;(t), &,(t), ... &,(t))T satisfies

M (t) + DPE(t) + KME(t) = BRu(t),
(4.2)

and the mass matrix M7, damping matrix D”, stiffness matrix K" , and actuator

influence matrix Bg are given by




= n _
Mn [(einGJ)H]: D [do(ei,eJ)].
= ral/2 1/2 _ _
K = (8 %ey . ap" Tedp] = ey edy] - [Ajey, 0000, (4.3)
n _
Bo = [<ei)bJ)H]-
Of course, (4.2) can be written as
1'1 = Ann + B%W '
(4.27)
where
n = [CTt § ]T
(4.4)
and
AD = 0 I g? = 0
~-M gy oph M "B
(4.5)
Note: Throughout this paper, we use the superscript n in the designation of

h

matrices in the nt approximating system and control problem, like

A", BY, Mn. etc., Hence the superscript n 1indicates the order of
approximation -~ and it never indicates a power of the matrix. By MR,

we denote the inverse of the mass matrix MP.

th

In the designation of a linear operator in the n*" approximation, we use the

the subscript n. For example, An and Bn are the operators whose matrix

representations are A" and BY, respectively.
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For convergence analysis, it is useful to note that (4.1) and (4.2) or
(4.2') are equivalent to
2 (t) = Az (t) + B u(t),
n nn " (4.6)
- . m
where z, (xn.xn)e En. and An e L(En) and Bn e L(R, En) are the operators

whose matrix representations are given in (4.5). Also, for any real A,

1 1
v h
(*-4) ° ={ ?
n v2 12
n n (4.7)
is equivalent to
A2+ "+ Mel = Mt o+ pMpl + Mp2
(4.8)
and
o2 = aal -l
(4.9)
if
n . n
vl - > aje and hY = % Bje , j=1,2.
n g 171 n o i1
g a (4.10)

(Substituting A" and (4.10) into (4.7) yields (4.8) and (4.9)).

Next, we will prepare to invoke the Trotter-Kato semigroup approximation
theorem to show how (4.2), (4.2') and (4.6) approximate (2.1) and (2.15),
First, we will treat the case in which AO is coercive (no rigid-body modes),
so that A1=0 and KB=AO‘ the general case is a straight-forward extension. For
AO coercive, the open—loop semigroup generator A is maximal dissipative. Also,

for each n, An is dissipative on En‘ The main idea here is to project (A—A)-1
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onto Vn in a certain inner product and observe that the result is exactly
(l—An)-l. where An is the operator on V, in (4.6) and (4.7). Of course, we

need only do this for real A>0.

For real A>0 then, define an innerproduct on V by

L 2
( p‘) = X(.;.) + ld (.p.) + <‘|.> .
A H 0 v (4.11)

Under the hypotheses in Section 2 on dO' (.’.>k is norm—equivalent to <‘.')v.

For n 2 1, let Pn(l) be the projection of V onto V, in the inner product

<.’.>A' Now let hl.h2 e H and note that
1
(r-4) =[5
v h (4.12)

is equivalent to

AV aaf) - ()]
= X - .
v2 v2 h2
(4.13)

with A1 from (2.10), (4.13) is equivalent to

-1 2,~1,. 1 _ -1 -1 1 ~1,2
(I + LAV AD + A Ao v = (AAO + Av AD)n + Ao h
(4.14)
and
V2 = lVl - hl.
(4.15)
If
vi = Pn(x)v1 and v§ = Pn(X)vz.
(4.16)

it follows from (4.11) and (4.14) that
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1 _ 1
ey, vy = <eq v 2y

2 -1.1 -1, 1 1
A7Ce Ay Yyt MeLAPADY + ey, vy (eaD)

2.~1,.,-1 1
<ei.(x A, +Mv /\D+I)v >y

-1,,-1 1,,-1.2

and from (4.15) that

2 2 1 1
{e,,v?>, = (Ke,,v>, = ale,,v >, - (e, ,,h> .
1’"n" A i A i A i A (4.18)

2

1 2 n written as in

1 _ 1 2 _ 2 1
Now, for h hn g Vn, h hn € Vn, and Vi vn, hn and h

(4.10), (4.17) and (4.18) yield (4.8) and (4.9) again.

This shows that

P_(d)
n 0 -1 _ _a 1
[ 0 Pn(x)](l“A) 'En = (Ar An) ’
(4.19)
which yields
P_(X)
n 0 -1 _ a1
(4.20)

where PEn is the E-projection of E onto En' The projection PEn can be written
P _ PVn 0
En ~ 0 PHn ’

where Pvn is the V-projection onto Vn. as before, and PHn is the H-projection

(4.21)

onto Vn. Since the V-norm is stronger than the H-norm and the norm induced. by
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the A-innerproduct is equivalent to the V-norm, it follows from Hypothesis 4.1
that (l'An)—l Pp, converges E-strongly to (-0} as 1> =, Now, with A
extended to E:'as, say, n(PEn-I), Trotter—Kato [Kl, page 504, Theorem 2.16]

yields the following.

Theorem 4.2. For A, coercive, let T, (°) be the (contraction) semigroup gem
erated on E by A . Then, for each t 2 0, T (t)Pp, converges strongly to

T(t), uniformly in t for t in bounded intervals.

In the general case, when A, is not coercive, the open—loop generator A
is obtained from the dissipative K'by the bounded perturbation in (2.13), so

that [G3, Theorem 6.6] yields the following generalization of Theorem 4.2.

Corollary 4.3. Let Tn(‘) be the semigroup generated on En by An. Then, for
each t 2 0, Tn(t )PEn converges strongly to T(t), uniformly in t for t in

bounded intervals.

1

Theorem 4.4. When A has compact resolvent, (A-An)" Pp, converges in L(E) to

(-1,

Proof. This follows from (4.20) and a standard result that the projections of
a compact linear operator onto a sequence of subspaces converge in norm if the

projections converge strongly to the identity, as do PEn and pn(x). d

That the adjoint semigroups also converge strongly follows from an argu-
ment entirely analogous to the proof of Theorem 4.2. In particular, equations

like (4.11)-(4.17) are used to show that
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[pnm o
0 Pn(L)

. -1 _ %1
] (x-4) PEn = (A An) PEn
(4.22)

In showing this, A~ is used as A™! was used above. Also, care must be taken

to calculate A; with respect to the E-inner product. The result is

Theorem 4.5. Let Tn(‘) be the sequence of semigroups in Corollary 4.3. Then,
*
for each t 2 O, T;(t)PEn converges strongly to T (t), uniformly in t for t in

bounded intervals.

Finally, for the approximation to the actuator influence operator B e
L(R™,E), recall B e L(R", E ), the operator whose matrix representation is

the matrix B® in (4.5). From (4.3), it follows that

B. = p_B.
a En (4.23)

Since B has finite rank m, Bn and B; converge in norm to B and B., respec-

tively.
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4.2 The Approximating Optimal Control Problems

? The n optimal control problem is: given z,(0) = (xn(O).;(n(O)) e B,

choose u ¢ Lz(O.w;Rm) to minimize

Inlzg(0),w) = é(<0nzn(t).zn(t)>E + <Ru(t),u(t)>gm)dt,

(4.24)

where Qn = PEnQ'En' We assume:

Hypothesis 4.6. For each n 2 1 and zn(O)e En‘ there exists an admissible con-

trol (Definition 3.1) for (4.6) and (4.24). O

A sufficient condition for Hypothesis 4.6 is that, for each n, the system

(A .B,) be stabilizable.

By Theorem 3.1, the optimal control un(t) has the feedback form
—1, *
u(t) = -R°B z (t)
n n T (4.25)

where]]h is a linear operator on E,, II, is nonnegative and selfadjoint, and IL

satisfies the Riccati equation

* —-1.%
A+ oA, - OBRBIL + q = o.
(4.26)
As a result of Hypothesis 4.6, (4.26) has at least one nonnegative, selfad-
Joint solution. The minimal such solution is the correct Hn here. If the

system (An’Qn) is observable, 'chenI[n is the unique nonnegative, selfadjoint

solution to (4.26), and is positive definite. If we write IIn as
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then (4.25) becomes

(4.27)

_1. *
u(t) = - RIBIIL. x (t) + x.(t)].
n 0 1n"n l:l2nn (4.28)

The feedback law (4.28) can be written in functional-feedback form, just

as in Section 3. We have

T
u(t) = [uy (t) u, (t)... (t)1°,
n 1n 2n Unn (4.29)
where
uin(t:) = - <fin,xn(t)>v - (gin.xn(t»H. 1< i £ m (4.30)
and
S |
fin = j§1(R )1jn1nPHnbj' 1 i £ m
a (4.31a)
o1
gil’l = J%l(R )ij nznPHan » 1 S_ 1 i m.
(4.31b)

th

Of course, fin and 8ip are the n approximations to the functional gains f’i

and g; in (3.34).

In Section 5, (4.25)-(4.31) will be useful for studying how the solution

h

to the nt optimal control problem converges to the solution to the original

th

problem of Section 3, but for numerical soclution of the n problem, we need

the matrix representations of these equations.

We will need the following grammian matrices:
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n _ _ n
KT = [ej,epyl = K° + [KAjey,eqdyl (4.32)

and

wn

0 MR

Note: The matrix W ™ will be the inverse of W!. The superscript n on any matrix

(4.33)

indicates the arder of approximation, not a power of the matrix. Also, recall

the note following (4.5).

Now recall Qn = PEnQIEn‘ Since Q = Q* ¢ L(E) and E = V X H, we can write

% 9
*

Q 9

Q =
(4.34)

]
where Q0 = Qge L(v), 01 e L(H,V), and Q; = Q; e L(H). Straightforward calcu-~

lation shows that

(4.35)
where Q! is the matrix representation of Qn and ?,)'n is the nonnegative, sym

metric matrix

~n ~n
“Q'n - QO Ql
~#nT Xn
Q" 9
(4.36)
with
'dn =
0 [<einoej>v]'
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Q' = [<e,,Qied>y],
1 171537V (4.37)

~N

Q = Kejgepyl.

Also, recall that A and B, are the operators whose matrix representations are

given by (4.5), and note that the matrix representations of A; and B; are

WM TW? and (8" TWR, respectively.

With the matrix representation of‘IIﬂ denoted by 11“. the Riccati operator
equation (4.26) is equivalent to the Riccati matrix equation
wianhTynpe + prat - PRl Twem® + o0 = o.
(4.38)
WhileIglis selfadjoint,lf‘ in general is not symmetric, but the matrix
N
m = v
(4.39)
is symmetric and nonnegative, and positive definite iflzlis. Premul tiplying
(4.39) by WP, we obtain
~ ar ~ ~ ~
TP o+ A - PRI + = o,
(4.40)

which is the Riccati matrix equation to be solved numerically.

Now we need one more set of matrix equations for the numerical solution

of the nth optimal control problem. Since the functional gains fin and g4,

are elements of V , they can be written as

£, n g

n
fin = Z Bye and g, = 35133' €50 1 = Le.om
3= (4.41)

f

. g f
where B . B i

R g o~
e RN, We need equations for B * and B * in terms of II'. One
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way to get these equations is to partition IP(obtained from (4.39)) and then
work out the matrix representation of (4.31). However, another approach is
more instructive because it relates the present Hilbert space methods to the

standard finite dimensional solution of the nth optimal control problem.

The nth optimal control problem can be stated equivalently as: given

n(0) = (20 T,2(0)T1 & RZP choose u e Lz(o,m;Rm) to minimize

I ,w = S + ww)TRue)at,
0 (4.42)

where n(t) = [8(t)T,£(£)T1T satisfies (4.2'). For (4.2') and (4.42), the
optimal control law is

T,
u, = R B2 IPq(t)

(4.43)

~
where II® is the minimal nonnegative, symmetric solution to (4.40).

Since § is related to X, by (4.1), the optimal control u, in (4.43) must

be equal to the optimal control u, in (4.29)-(4.31). Substituting (4.41) into
(4.30) yields

f. g . £ 8;
u = - O - @ HTE = g HT ¢ H T,
(4.44)
Then, using (4.44) and equating (4.29) and (4.43) yields
Bfl sz . Bfm
~
g g g w‘n]]anR"l
1 2...
B B
(4.45)

We now have the complete solution to the n'® gptimal control problem:
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The Riccati matrix equation (4.40) is solved for ‘ﬁn’. then the optimal control
_ is given by (4.43), and equivalently by (4.29)-(4.30) with the functional
gains fin and g;, given by (4.41) and (4.45). In the next section, we will
L give sufficient conditions for the solution to the nth optimal control problem
to converge to the solution to the optimal control problem in Section 3 for

the original infinite dimensional system.
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5. Convergence

As in Section 3, subsection 5.1 will state some results for the optimal
linear regulator problem involving generic linear operators A, B, Q, eic., on
an arbitrary real Hilbert space E, and subsection 5.2 will expand upon these

results for the particular class of control problems treated in this paper.
5.1 Generic Approximation. Results

Let the Hilbert space E and the linear operators A, T(¢), B, Q and R be
as in Section 3. Suppose that there is a sequence of finite dimensional sub-
spaces En' with the projection of E onto En denoted by PEn' such that PEn con—
verges strongly to the identity as n — = , and suppose that there exist
2 0,

£ A n - q
sequences of operators n & L(En), Bn e L(R ,En). Q Qn € L(En), Q

n n

such that we have the following strong convergence. For all z e E and t20,

exp(Ant)PEnz - T(t)z

(5.1)
and
[ ] *
exp(Ant)PEnz = T (t)z
(5.2)
as n— o, uniformly in t for t in bounded intervals; for each u ¢ RT,
Bnu -~ Bu;
(5.3)
for each z ¢ E,
QP z — Qz.
nEn (5.4)

Theorem 5.1. Suppose that for each n there is a nonnegative, selfadjoint

linear operator Hn on En which satisfies the Riccati algebraic equation
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‘ L -1,* _
» AL+ Ma - MBRBI + a = o. 550
’ L
If there exist positive constants M and B, independent of n, such that
llexp(IA ~B R B IL1t) || < e °, ¢t > o,
somn - (5.6)

and if || IO || is bounded uniformly in n, then the Riccati algebraic equation
(3.3) has a nonnegative se!fadjoint solutionII , and, for each z ¢ E,

Pz -1z
e (5.7)

and
~1
exp(IA ~B R™1BJT 1t)P; z — S(t)z
(5.8)

uniformly in t > 0, where S(*) is the semigroup generated by A—BR"IB'II . If
there exists a positive constant &, independent of n, such that

Q 2 5'

" (5.9)

then || Ilnll being bounded uniformly in n guarantees the existence of positive

constants M and B for which (5.6) holds for all n.

Proof. The theorem follows from Theorem 5.3 of [G4] when the operators An’ Qn
zden are extended to all of E by defining them appropriately on E;:'. For the
details of this procedure, see Section 4 of [Gl]l. Or better, Banks and Kun-
isch [B6] have modified Theorem 5.3 of [G4] to obtain essentially the present
theorem without using the artificial, and rather clumsy, extensions to E: in

the proof. O
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Theorem 3.2 The strong convergence in (5.7) implies uniform norm convergence
of the optimal feedback laws:

| J L4
IanlInPEn- BIOIl 50 as n— =,

(5.10)

Proof. This follows from the selfadjointness ot‘Hn and Py and the finite
dimensionality of the control space R®. See equations (4.23) and (4.24) of
[G1l. O

Theorem 5.3 Assume the hypotheses of Theorem 5.1 but do not assume (5.6) or

(5.9). 1r || IL Il 1is bounded uniformly in n, then the Riccati algebraic

equation (3.3) has a nonnegative selfadjoint solution II, and, for each z e E

Ll ]

nnPEnz converges weakly to IIz.

Proof. This is Theorem 6.7 of [G3], whose proof is valid under the hypotheses
here. [J

The main shortcoming of the weak convergence in Theorem 5.3 is that it does

not yield uniform norm convergence of the feedback control laws.
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P— 5.2 Convergence of the Approximating Optimal Control Problems of
Section 4.2
L For the rest of this section, A;, Ay, A, T(t), By and B are the operators

defined in Section 2. The operators An‘ Bn‘ Qn andlln are the operators in

the approximation scheme of Section 4. In particular, II e L(En'En) is the

minimal nonnegative, self-adjoint solution of the Riccati operator equation
(4.26) . According to Corollary 4.3 and Theorem 4.5, the Ritz—Galerkin approx-
imation scheme presented in Section 4.1 converges as required in (5.1) and
(5.2); (5.3) and (5.4) follow from (4.23) and the definition Qn = PEnQIEn in
Section 4.2. Also, Hypothesis 4.6 guarantees for each n the existence of the

required solution of the Riccati equation (5.5) in Theorem §.1.

Since IIn is nonnegative and self-adjoint, its eigenvalues, which are
also the eigenvalues of its matrix representation, are real and nonnegative,

and its norm is equal to its maximum eigenvalue.

Theorem 5.4 If Q is E-coercive and do = 0 (i.e., there is no open—loop damp-
ing), then there is no nonnegative self-adjoint solution of the Riccati opera-
tor equation (3.3), and

I l = as n—> =,
Iln (5.11)
Proof. Recall the operator 1 in Section 2.1. By Theorem 1 of [G2], there can
be no compact operator C ¢ L(E,E) such that T+c generates a uniformly
exponentially stable semigroup. Therefore, since a compact linear perturba—

tion of Tyields A, there can be no compact linear C such that A + C generates

a uniformly exponentially stable semigroup.
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Now, unless (5.11) holds, there exists a subsequence such that || m, il
J

is bounded in nj’ so that Theorem 5.3 says that there exists a nonnegative
self-adjoint solution II of (3.3). Since Q is coercive, Theorem 3.3 then
says that the semigroup generated by A - BR'IB‘II is uniformly exponentially

stable. But this is impossible —- BR—IB'H is compact because its rank is not

greater than m. [J

Iheorem 5.5. Suppose that A, and do(‘,‘) are both H-coercive. Then there

exist positive constants Ml and ay, independent of n, such that

llexpla t1]] ek 0
explA _t] < e ’ t 2 0.
n ! (5.12)

Proof. First, we define AOn and D, ¢ L(Vn.Vn) to be the operators whose

On
matrix representations are M PK® and M D%, respectively. (See Section 4.1.)

The operator An is then

S | -
n - -D
bon On (5.13)

Since Ao and do are H-coercive, there exists a positive constant p,

independent of n, such that

2
Aoph,hdg 2 plinlly (5.14)

and

2
Do, >y 2 plin|l
On™*"H i (5.15)

for all h e Vn . Since do is continuous on V X V, there exists a positive
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constant y, independent of n, such that
Dg.h,y < ylinll3
(5.16)

for all h e Vn. The theorem follows then from Theorem 2.1. (J

Iheorep 5.6. Suppose that A, has an invariant subspace V, which is also

invariant under the damping map A",IA that Ey = Vy X V, is a stabilizable

D’ 0
subspace for the control system, and that the restrictions of AO and do(',-)

to Vbl are both H-coercive. Also, suppose that Vo has finite dimension n, and
that, for each n 2 n, in the approximation scheme, the first n, €;,4 Span Vo

and the rest are orthogonal to V0 in both V and H.

i) Then (3.3) has a nonnegative solution II, and for each n 2 n,, (5.5) has a
nonnegative self-adjoint solution lln Al so, ]In is bounded uniformly in n, so

that:l]n converges to Il weakly, as in Theorem 5.3.

ii) If E, and E;)L (the E-orthogonal complement of E,) are invariant under Q,
and if the part of the opem—loop system on E0 is observable with the measure-

ment Qz, then (5.6)-(5.8) hold as in Theorem §5.1.

Proof. We will invoke Theorem 3.7 to establish the existence of the uniform
bounds and decay rates needed in Theorem 5.1. 1In the approximating optimal
control problems, the part of the control system on E0 is the same for each n;
the approximation of the control system takes place on E&L We can write E:n =
E @& E"' where E'L is the orthogonal complement of E, in E and E, and E:‘L

0 © “on’ On g 0 n’ 0 On

clearly reduce the open1loop semigroup for each n 2 n, .

For the part of the open1loop system on EOn‘ Theorem 5.5 establishes
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positive Mi and a;. independent of n, for (3.17). Also, we have a B
independent of n for (3.18) because Bn = PEnB and Qn = PEnolEn' Therefore, 1)

follows from Theorem 3.7 i) and Theorem 5.3.

The definition of Qn and the requirement on where the various basis vec-—
tors must lie imply that Eo and E;)Ln reduce Qn if Eo and E: reduce Q and that
the restriction of Q to Eo is the same for all n. Therefore, ii) follows from

Theorem 3.7 ii) and Theorem 5.1. [J

Remark $.1. In applications, the subspace V, in Theorem 5.6 usually contains
rigid-body modes. The theorem includes the case where both Ao and dO are H-
coercive on all of V (no rigid-body modes and all modes damped). In this

case, Vo is the trivial subspace. 0

Remark 5.8. Otherwise, for applications to flexible structures, Theorem 5.6
usually requires two things: first, modal damping must be modeled for the
structure, so that the natural modes remain uncoupled in the opemrloop system;
second, the natural mode shapes must be used for the basis functions in the
approximating optimal control problems. Although these requirements may seem
restrictive from a mathematical standpoint, such modeling and approximation
predominate in engineering practice. Also, we get our strongest convergence
results under these conditions. For applications where the basis vectors are

not the natural mode shapes, the following theorem is useful. O

Theorem 5.9. Suppose that Ao + BOB(‘) and d0 + BOB; are H~coercive., Then (3.3)

has nonnegative solution II, for each n (5.5) has a nonnegative self-adjoint

solution Hn, and || O 11 is bounded uniformly in n. Hence Theorem 5.3

applies. Furthermore, if Q is E~coercive, then (5.6)—-(5.9) hold in Theorem 5.1.




1 Proof. The required bounds follow from Theorem 3.10 and the proof of Theorem
ill 5.5. Although we took A1 = BOB; in Theorem 3.10, this is not necessary in the

final result, since all bounded self-adjoint operators A1 on H that make Ao +

A1 coercive yield equivalent norms for V. [J

Theorem 5.10. If (5.7) holds for each z e E, then

e, - 11, = o0,
in 17 (5.17a)

e - &illy >0, as n - o,
in 17'H (5.17b)

where fi and g; are the functional gains in (3.16), and f, and 8, are the

in
approximating functional gains in (4.31) and (4.41).

Proof. The result follows from (4.31). [J

Note that (5.10) and (5.17) are equivalent.
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6. Example

6.1 The Control System

One end of the uniform Euler—Bernoulli beam in Figure 6.1 is attached
rigidly (cantilevered) to a rigid hub (disc) which is free to rotate about its
center, point 0, which is fixed. Also, a point mass m, is attached to the
other end of the beam. The control is a torque u applied to the disc, and all

motion is in the plane.

Figure 6.1, Control System
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= hub radius 10 in
= beam length 100 in
Iy = hub moment of inertia about axis
perpendicular to page through 0 100 slug in?
I, = beam mass per unit length .01 slug/in
m = tip mass 1 slug

EI = product of elastic modulus and second moment
of cross section for beam 13,333 slg in3/sec?

fundamental frequency of undamped structure .9672 rad/sec

- Table 6.1 Structural Data

The angle @ represents the rotation of the disc (the rigid-body mode),

w(t,s) is the elastic deflection of the beam from the rigid-body position, and

W,(t) is the displacement of m; from the rigid-body position. For technical
reasons, we do not yet impose the condition wl(t) = w(t,l); more on this

later.

The control problem is to stabilize rigid-body motions and linear (small)
transverse elastic vibrations about the state ¢ = 0 and w = 0, Our linear
model assumes not only that the elastic deflection of the beam is linear but
also that the axial inertial force produced by the rigid-body angular velocity
has negligible effect on the bending stiffness of the beam. The rigid-body

angle need not be small.

For this example, it'is a straight forward exercise to derive the three

coupled differential equations of motion in @, w and W; , and they do have the
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form (2.1'). However, to emphasize the fact that we do not use the explicit
partial differential equations, we will not write these equations here.
Rather, we will write only what is normally needed in applications: the
kinetic and strainmenergy functionals, the damping functional and the actuator

influence operator.

Remark 2.1 applies to this example, and to most examples with complex

structures. The generalized displacement vector is

x = (8,w,w;) ¢ H, = R L,(0.f) X R
1 ’ .
0 2 (6.1)
The kinetic energy in t¥: system is
Kinetic Energy = 35 <'x.x>H
(6.2)
where H is Hj with the inner product
o { A A
Xy = m [y [wt(r+s)8][w+(r+s)8lds
(6.3)

+ 1068+ o Lwg+(refDO1 18 +(r+ )8,

As in most applications, we need not write the mass operator explicitly, but

there exists a unique selfadjoint linear operator M0 on 1-10 such that

@B, = Mx,® .
H 0 Ho
(6 l4)
It is easy to see that Mo is bounded and coercive. Hence Hy and H have
equivalent norms.
_
The input operator for (2.1') (which maps R to Ho) is
°
4
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Bo = (1.0,0).
(6-5)

Since we multiply (2.1') by Mal to get (2.1), the input operator for (2.1) is

(MBIBO) . Note that

-1. .*H .
(M B ) = B »
0 "o 0 (6.6)

-1, \*H ~1 .
where (Mo By) ~ is the H-adjoint of (M0 B)) and B, is the Hy-adjoint of By.

Remark 2.2 also applies here. The only strain energy is in the beam and

is given by

Strain Energy = Y5 a(x,x)
(6.7)

with

a(x.?c) = EIfo W' 'a"ds,
(6.8)

where (‘)” = 82(')/832('). To make a(°,*) into an inner product, we must

account for rigid-body rotation. Thus we set

<x.’:‘:>v = ax,®) + o8

(6.9)
and define
- Ix = . 2¢0.4 - 87(0) =
V = [x =(0,8,8(1)): ¢ g8 H(0,X), p(0) = ¢'(0) =0 }.
(6.10)
()
Also, we have
x®y = axd 4 <BOB;x.’£>HO
(6.11)
.
_ -1 -1 sH A
= a(x.?) + <(M0 Bo)(M0 Bo) x,x)H,
L J
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so that Ay = B B, or (M;1B)) (;1B))™, depending on whether the Hy or the H-

inner product is used in computing the V-inner product. But we need neither Al
mor A, explicitly. Ne need only (6.8) and (6.9), along with (6.3), to compute
the required inper products.

As mentioned in Remark 2.2, the operator IO can be defined now by (2.6),
and the stiffness operator is Ao = 'KD - A1 Using the Ho—inner- product in
(2.6) ylelds the Ao for (2.1'), and using the H-inner product yields the A,
for (2.1), which is M;' following the Ay for (2.1'). The Ay for (2.1') is
quite simple, and the reader might write it out. We will not, so that no one
will think that we use it. We will point out that D(A)) requires both the
geometric boundary conditions in V and the natural boundary condition w’ '(t,ﬂ)

= 0; i.e., zero moment on the right end.
Remark 6.1. That the geometric boundary conditions

w(t,0) wi(t,0) =0

(6.12)

and

w(t.‘) W, (t)

(6.13)
are imposed in V but not in H —— 1i.,e., on the generalized displacement but not
on the generalized velocity —— is common in distributed models of flexible
structures., The natural norm for expressing the kinetic energy of distributed
components is the L,-norm, which cannot preserve constraints on sets of zero
measure. Because the strain energy involves spacial derivatives, the stronger

strain-energy norm can preserve the geametric boundary conditions (although,

as for the boundary slope of an elastic plate, the V-norm may impose some of
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these boundary conditions in an L, rather than a pointwise sense). The
strainenergy norm is based on the material model of the distributed com-
ponents of the system, and it should not be surprising that such a norm is

required to connect the various structural components. [J

We assume that the beam has Voigt-Kelvin viscoelastic damping [C2], so

that the damping operator in (2.1) is

D = ¢
0 oo (6.14)
where Co is a constant. This means that the damping functional is

A
do(x.x) = ¢q a(x.?). % e V.

(6.15)

6.2 The Optimal Control Problem

We take Q = I in the performance index in (3.1). This means that the
state weighting term <Qz.Z>E is twice the total energy in the structure plus
the square of the rigid-body rotation. Since there is one input, the control

weighting R is a scalar.

According to (3.33), the optimal control has the feedback form

u(t) = - <f.x(t))v - (g,x(t)>H
(6.16)
where x(t) has the form (6.1), and
-1
£f = (ap,ppsBp) = R B, g V,
rerertr e (6.17a)
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-1
g = (a_,6 ,8) = R B, & H.
LM % (6.17b)

Note that B. = ¢o(f) is not used in the control law--recall (6.8) and (6.9).

6.3 Approximation

Our approximation of the distributed model of the structure is based on a

P finite element approximation of the beam which uses Hermite cubic splines as
basis functions ([S1,S4]). These are the basis functions most commonly used in

engineering finite element approximations of beams. The splines and their

i first derivatives are continuous at the nodes. Because the basis vectors e:l

in the approximation scheme in Section 4 must be in the space V defined in

(6.10), we write them as

ey (1,0,0),
(6.18a)

(oo¢jp¢j(1))’ j = 2,3, .« 4 4

Cae
|

(6.18b)
where the ¢j's are the cubic splines. When we use n, elements to approximate
the beam, there are Zne linearly independent splines. Thus, with the rigid-

body mode, the order of approximation is n = Zne + 1,

®
For the numerical solution to the optimal control problem, we have only
to plug into the formulas of Section 4. The matrices in (4.3) are calculated
according to (6.3), (6.8) and (6.9), with B0 given by (6.5). 1In particular, °
Kn = faf(e ,e:)], Dn = ¢ Kn' Mn = [<e ’e> ]v
73 0 17370 (6.19)
L
n cer T _ ~1 ]
BO = [100 0] = [<ei,Mo (1,0.0)>H] = [(ei.(1,0,0)>H0]
(6.20)
)
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P‘ Note that the first row and column of K" are zero. The matrix P in (4.32) is
K® with 1 added to the first element. The matrices A" and B® are given by
(4.5) and, since Q = I, the matrix QP is the W" in (4.33). With these

' matrices, we solve the Riccati equation (4.40) and use (4.41) and (4.45) to

compute the approximations to the functional gains, which are

h fn = (appbpnsBey): (6.21a)
gn = (csn‘¢gn‘68n). (6.21b)

For convergence, we satisfy all the hypotheses of Theorem 5.9. In par-
ticular, since Q is the identity on E, it is coercive. Theorem 5.9 implies
that the solutions to the finite dimensional Riccati equations converge as in

Theorem 5.1 and that the functional control gains converge as in theorem 5.10.

Remark 6.2. It might appear that the hypotheses of Theorem 5.6 hold with ng =

1, but not so. For j 2 2, ej is orthogonal to e in Ho and V not in H.
Recall (6.1)-(6.3), (6.9)-(6.11) and (6.18). OO
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6.4 Numerical Results

Figures 6.2a and 6.2b show the computed functional gain kernals ¢;; and

6., for the damping coefficient ¢y = 1074, the control weighting R = 1, and

8n
By = 2, 3,4, 5 and 8 beam elements. Table 6.2 lists the corresponding scalar
components of the gains. For Co = 10"4 and R = 05, the convergence is slower,
as discussed below. To show the complete story of convergence, Figures 6.3a
and 6.3b and Table 6.3 show the results for B, = 2,3,4,5,8, and Figures 6.4a

and 6.4b and Table 6.4 show the results for n, = 4,6,8,10.

We have plotted ¢;; because the second derivative appears in the
strainenergy inner product in (6.8) and (6.9) and 9ppn cONnVerges in HZ(O.‘).
Note that, since the Hermite cubic splines have discontinuous second deriva-
tives at the nodes, the approximations to ¢;' are discontinuous at the nodes.

2

Although H°-convergence guarantees only Lz-convergence for ¢;;. it can be

shown that ¢;; converges uniformly on [0,f] for this problem.

The tables omit ﬁfn to emphasize the fact that it does not appear in the
feedback law and the fact that the convergence of Bfn is not an independent
piece of information about the convergence of the control gains; since ¢f‘n(°)
= ¢;n(0) = 0, the convergence of ¢;; implies the convergence of Bfn = ¢fn (R).
On the other hand, although Bgn = ¢8n () for each n, the H-norm convergence
of g, does not enforce this condition in the l1imit, as the V-norm convergence
of fn enforces Bf = ¢f(!). Hence, as far as we can tell from our results in
Sections 3.5, Bfn is an independent indicator of the convergence of the con-
trol gains, as well as being used in the control law in (6.16). However, the
behavior of bgn in Figures 6.2b, 6.3b and 6.4b suggests that g, converges in

V. Stronger results on the continuity of ¢g and the convergence of ¢8n(‘)
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1/ Yt

should follow from a theorem stating that, because the opemnloop semigroup
generator A is analytic, the solution to the infinite dimensional Ricecati
equation maps all of E into D(A*). The fact that ¢;.;(f) converges to zero in

Figure 6.2a also suggests such a theorem, but we have not proved it.

With the state weighting Q fixed, the two factors that determine the rate
of convergence are ¢o and R. Although we have used splines to approximate the
beam, the relation between the oconvergence rate and o and R probably can be
interpreted best in terms of the number of natural modes of the structure that
the optimal infinite dimensional controller really controls. Strictly speak-
ing, the controller controls all modes, but the functional gains lie essen—
tially in the span of some finite number of modes. This would be the number
of modes required for convergence of the gains if we used the natural modes as
the basis vectors in the approximation. The rest of the modes are practically
(but not exactly) orthogonal to the functional gains, so that the optimal
feedback law essentially ignores them. In general, the lighter the damping,
the more modes that will be controlled for given Q and R; the cheaper the con-
trol, the more modes that will be controlled for given Q and ¢y. The question
of the convergence of the finite element approximation to the functional gains
becomes then a question of how many modes the optimal control law really wants

and how many elements it takes to approximate those modes.

Numerical experience with optimal control of flexible structures has
shown this modal interpretation of the convergence of the approximating con-
trol laws to be very useful, and that it is difficult to improve upon the
natural modes as basis vectors for the approximation scheme (see [G51) How-

ever, whether the natural modes are always or almost always the best basis
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vectors is an open question. We use the cubic splines here to demonstrate

that a standard finite element approximation works quite well. Also, to use

the matural modes as basis vectors here, we first would have to compute them
using a finite element approximation —- as in most real problems -- and we do
not know in advance which or how many modes are needed. On the other hand, if
the most important natural modes are determined from experiment, then modal

approximation should be best.
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' e %fa %gn Pgn
2 1.000 2141 -22.,459
3 1.000 2396 -25.221
4 1.000 <2496 -26.331
5 1.000 .2534 -26.786
8 1.000 2561 -27.041

Table 6.2. Scalar Components of Functional Control Gains
Damping coeffictent ¢, = 10°%; control weighting R = 1

number of elements n, = 2,3,4,5,8

Ng ern %gn Bgn

2 4.4721 1.0136 -108.27
3 4.4721 1.1770 -126 .40
4 4.4721 1.2440 -133.87
5 4.4721 1.2781 -137.57
8 4.4721 1.3106 -141.15

Table 6.3. Scalar Components of Functional Control Gains
Damping coefficient c, = 10"4; control weighting R = .05

number of elements ne =2,3,4,5,8

De %rn %n Ben

4 4.4721 1.2440 ~133.87

6 4.4721 1.2973 -139.69

8 4.4721 1.3106 -141.15
10 4.4721 1.3141 ~141.54

Table 6.4. Scalar Components of Functional Control Gains

Damping coefficient ¢, = 107%; control weignting R = .05

number of elements n, = 4, 6, 8, 10
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Figures 6.5a and 6.5b and Table 6.5 represent attempts to compute an

R\

optimal control law for the structure when R = .05 but ¢y = 0. Since Q is the
identity operator in E and hence coercive, Theorem 5.4 says that no optimal

‘ control law exists and that the norm of the solution to the finite dimensional

Riccati equation grows without bound as the number of elements increases.

and Bgn' al though ap, com

E This is reflected in the nonconvergence of agn' ¢8n

re
verges and the convergence of Prn is unclear.

In applications where the structural damping is not known, except that it
h is very light, it is tempting and not uncommon engineering practice to assume
zero damping in the design of a control law for the first few modes, while

trusting whatever damping is in the higher modes to take care of them. How—

ever, if high performance requirements (large Q) or coupling between modes in
the closed-loop system necessitate a control law based on a more accurate
approximation of the structure, Theorem 5.4 and the current example warn that

the higher—order control laws are likely meaningless and rather strange if no

[ )
damping is modeled.
We should note that we have seen similar problems [G9] where[[n remains
o
bounded and the gains converge for zero damping but finite-rank Q. 1In such
cases, Theorem 5.3 says that an optimal control law exists for the distributed
model of the structure and that the finite dimensional control laws converge
®

to an optimal infinite dimensional control law. Also, Balakrishnan [B2] has
shown that an infinite dimensional optimal control law exists for no damping

when Q = BBS*.
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e %fn %gn Pgn

. 2 4.4721 1.0516 -112,23
h 3 4.4721 1.3061 -140.18
4 4.4721 1.4758 -159,11
5 4.4721 1.5996 -172.64
8 4.4721 1.8407 ~-199.39

Iable 6.5. Scalar Components of Functional Control Gains
Zero damping; control weighting R = .05

number of elements n, = 2, 3,4,5,8
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7. The Optimal Infinite Dimensional Estimator., Compensator and Closed-loop
System

As in Sections 3 and 5, we will state some initial definitions and
results for an arbitrary linear control system on a Hilbert space in Subsec-
tion 7.1, and then discuss implications for flexible-structure control in Sub-

section 7.2.

7.1 The Generic Problem

Let A, T(t) and B be as in Subsection 3.1, with E an arbitrary real Hil-

bert space. The differential equation corresponding to (3.2) is, of course,

z(t) = Az(t) + Bu(t), t > O.
(7.1)
We assume that we have a p-dimensional measurement vector y(t) given by
y(t) = Cqu(t) + cCa(t),
(7.2)
where Co e L(R®, RP) and C e L(E,RP) for some positive integer p.
A
Definition 7.1. For any F & L(RP,E), the system
A A A A
z(t) = Az(t) + Bu(t) + Fly(t) - Cqu(t)-Cz(t)l, t > 0O,
(7.3)

will be called an observer, estimator (we use the terms interchangeably), for
A A
the system (7.1)-(7.2). Let S(t) be the semigroup generated by A-FC. The
A
observer in (7.3) is strongly (uniformly exponentially) stable if S(t) is

strongly (uniformly exponentially) stable. [J

To justify this definition, we write

71




e(t) = z(t) - 2(t)
(7.4)

and, with (7.1)-(7.3), obtain

e(t) = 3t)e(®), t 3 o.
(7.5)
Of course, an observer, or estimator, is necessary because the full state
z(t) will not be available for direct feedback, and the feedback control must
be based on an estimate of z(t). When, as in this paper, the desired control

law has the form

u(t) = -Fz(t)
(7.6)

for some F e L(E,R®), the observer in (7.3) can be used to construct 2(t) from
the measurement in (7.2) and then the control law in (7.6) can be applied to

?(t). The control applied to the system is then

A
u(t) = -Fz(t),
(1.7
and the resulting closed-loop system is
i R ] Fd B Y
z(t) z(0) (1.8)
where S,,.,(t) is the semigroup generated on E X E by the operator
A -BF
Aq,:,, = ﬁc [A"BF‘?C] ’ D(Aa:‘w) = D(AYXD(4).
(7.9)

With the estimator error e(t) defined by (7.4), it is easy to show that

(7.8) is"8quivalent to (7.5) and
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z(t) = (A-BF)z(t) + BFe(t), t > O,
(7.10)

where (A-BF) generates a semigroup S(t) on E. Also, it is easy to prove the

following.
h Iheorep 7.2. Suppose that there exist positive constants M;, M,, a; and a,
such that
Mst)ll < 4 e ,
_azt
NS & e “, 2 0.
(7.11)
L Then, for each real ay < min{al. a2}. there exists a constant M3 such that
I st
St & Me , t > o0.
® K (7.12)
Also,
A
o(d_, ) = o(a-BF) Y o(A-FO),
(7.13)

where G(A,,.Q) is the spectrum of A_,_. OJ

The observer in (7.3) and the control law in (7.7) constitute a compensa-

tor for the control system in (7.1) and (7.2). The transfer function of this

compensator is

A -1A
#(s) =-F(sI-[A-BF + F(COF—C)]) F .,
(7.14)

which is an m X p matrix function of the complex variable s. When E has

infinite dimension, the compensator transfer function is irrational, except in
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degenerate, usually unimportant cases.

The foregoing definitions of this section and Theorem 7.1 are straight-
forward generalizations to infinite dimensions of observer—controller results
in finite dimensions. Balas [B3) and Schumacher [S2) have used similar exten

sions.

A
Now suppose that F is chosen as
A
| o
(7.15)
A
where II ¢ L(E,E) is the minimal nonnegative selfadjoint solution to the Ric-
catl equation
A A
Al + A - HcC
(7.16)
~N
with Q ¢ L(E,E) nonnegative and selfadjoint and R ¢ L(RP,RP) symmetric and
positive definite. Theorem 3.3 (with A, B, Q, R, II and S(t) replaced by
A A A
A.,C.. Q, R, ﬁ. and S.(t)) gives sufficient conditions for ﬁ to exist and for
Py A
the semigroup S‘(t) ~— and equivalently its adjoint, the S(t) generated by

A s A]
A-IIC R "C — to be uniformly exponentially stable.

Definition 7.3. When the control gain operator is

F = R3B°IN,

(7.17)
with II the solution to the Riccati equation (3.3), and the observer gain
operator is given by (7.15) and (7.16), we will call the compensator consist-
ing of the observer in (7.3) and the control law in (7.7) the optimal jinfinite

dimensional compensator, and (7.8) the optimal closed-loop system. [J
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Control System

[3)

A A A
= [A-BF-F(C, FC)]1 2 + Fy

le—

A
u = -Fz

Optimal Infinite Dimensional Compensator

Figure 7.1, Optimal Closed-loop System

Remark 7.4. The infinite dimensional observer defined by (7.3), (7.15) and
(7.16) is the optimal estimator for the stochastic version of (7.1) and (7.2)
when (7.1) is disturbed by a stationary gaussian white noise process with zero
mean and covariance oper’atora and the measurement in (7.2) is contaminated by
similar noise with covariance ﬁ. For infinite dimensional stochastic estima-
tion and control, see [Bl, C4]. When the state weighting operator Q in (3.1)
is trace class, the optimal infinite dimensional compensator minimizes the
time—average of the expected steady-state value of the integrand in (3.1).
Existing theory for stochastic control of infinite dimensional systems
requires trace—class Q, but we have a well defined compensator for any bounded

A
nonnegative selfadjoint Q and Q, as long as the solutions to the Riccati
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e

equations exist. As the next two sections show (without assuming trace-class
6). the infinite dimensional compensator is the limit of a sequence of finite
- dimensional compensators, each of which can be interpreted as an optimal LQG
compensator for a finite dimensional model of the structure. Therefore, we do
not require trace-class Q in our definition of the optimal compensator, even
- though this compensator solves a precise optimization problem only when Q is

trace class.

h This paper 1is concerned primarily with how the finite dimensional compen-
sators converge to the infinite dimensional compensator, and the analysis of

this convergence requires only the theory of infinite dimensional Riccati

equations for deterministic optimal control problems and the corresponding
approximation theory. While the stochastic interpretation of the infinite
dimensional compensator and, in Section 8.2, of the finite dimensional estima-
tors should be motivational, nothing in the rest of the paper depends on a
stochastic formulation. We assume that the operators Q, R, 3 and Iﬁ are deter—
mined by some design criteria. In many engineering applications, determinis—
tic criteria such as the stability margin and robustness of the closed-loop
system, rather than a stochastic performance index and an assumed noise model,

A A
govern the choice of Q, R, Q and r.0d

7.2 Application to Structures

For the rest of the paper, E = VX H as in Section 2, and A and B are the

operators defined there.

°
The measurement operator C in (7.2) now must have the form
.ﬂ
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c = [C

c.]
1
2 (7.18)

where C1 & L(V,RP) and 02 e L(H,RP). Hence, if we denote by (C(x.x))i the 1th

component of the p-vector C(x,x), for (x,x) e E, then there must exist ciy & v
and Cpy & H such that
(COLX)), = <CqrsXdy + <Corsxdus L = 1,eeesps
i 11 v 2i"*H (7.19)
Also, the estimator gain operator F is given by
A P A
Fy = b3 (f‘i,gi)yi
i=1
(7.20)
A
for y = Ly y5..0 ¥ 17 ¢ RP, where the functiopal estimator gains f, and 'g‘i

are elements of V and H, respectively.

A
For the optimal estimator gains, we can partitionII as

B
IIZ (7.21)

and use (7.15) and (7.19) to get

>
[y
"
Mo
~
£
!
-
A4
&
~
=
o)
[
Ca
+
M
0
[ )
[ 2r
S
-

J (7.22a)

‘—l) As A
(R ij(nlclj + I[zczj) » i = 1’2'0.l|p.

2}
[
it
" Mo

(7.22b)

A
Now let us partition Q as in (4.34):
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A
a Q% 4
As A *
Q 9
(7.23)
- In the optimal control problem, we almost always have a nonzero Qo because

this operator penalizes the generalized displacement. For the results in this

A
paper, Qo can be nonzero in the observer problem, and, as in the control prob-

|

lem, some of the strongest convergence results for finite dimensional approxi-

mations can be proved only for coercive 3. However, if the observer is to be
A
thought of as an optimal filter, then Q should be the covariance operator of

A A
the noise that disturbs (2.1). In this case, Q0 = 0 and 01 =0,
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8. Approximation of the Infinite Dimensional Estimator

8.1 The Approximating Finite Dimensional Estimators

Here, the scheme for the approximation of the flexible structure is that
in Section 4. We will construct on the subspace En an estimator that approxi-

mates the optimal infinite dimensional estimator of Section 7, and this esti-

th_order estimate ’z‘n = &) of the infinite dimen

th

mator will produce an n

sional state vector z = (x,x). In Section 9, the the n  -order compensator

h

that results from applying the nt approximation to the optimal control law

(in Section 4.2) to Qn will approximate the optimal infinite dimensional com-
pensator of Section 7.

Hypothesis 8.1. There exist a sequence Cn € L(En.Rp) such that

llCnPEn—Cll >0 as n—>°

(8.1)
d 8 8 - 6 0
and a sequence n € L(En), Qn =Q 2 » such that
A A
Q P, - Q strongly as n— = .[
n En (8.2)

3 .
Hypothesis 8.2. For each n, the system (An,Cn) is stabilizable. In particu-

lar, any unstable modes of the system (Cn,An) are observable. [J

The nth observer, or nth estimator, is
2 - A% + Bu + P (y-Cuc%)
n n’n n4 ORI Rl

(8.3)

~
where the estimator gain Fn is




m
|
p

A A ‘A—l
= IRGE (8.4)

A
and Iglis the nonnegative selfadjoint solution to the Riccati operator equa-

tion

Anﬁn + ﬁnAr.l " ﬁnC:}%—lCnﬁn * an = 0.

Hypothesis 8.2 implies that such a solution exists and is unique.

(8.5)

th

This representation of the n*" estimator as a system on En' with the

estimator gain determined by the solution to a Riccati operator equation, is
necessary for showing how the sequence of finite dimensional estimators
approximate the infinite dimensional estimator. However, on-line computations

will be based on the equivalent differential equation

=)e

A
= A"% + BM 4 F“(y-cou-c"ﬁ)
(8.6)

where f(t) e R2n

, A" and B" are the matrix representations of the operators An
and Bn' as in Section 4, and ¢ is the matrix representation of Cn‘

A
The 2nxp gain matrix F? is

A A —

- fif yn e TR,
(8.7)

A
where W' is the 2n X 2n grammian matrix in (4.33) and II® satisfies
A An  _ A, — A A
A - Pt amTw s e wre e« 80 - o,

(8.8)

A
with Q7 the matrix representation of Gn. The relationship between Qn =

A &
(xn,?n) and % is, of course,
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x (t) = Elt‘.i(t)ei
(8.9)
and
AT A
(8.10)

Since the matrix representations of 4  and A; are A" and W 2(a™MT WP, respec-
tively, and the matrix representation of C; is H—n(Cn)T. (8.7) is the matrix
representation of (8.4), and the 2n X2n Riccati matrix equation (8.8) is the
matrix representation of (8.5), with ff’ the matrix representation offir

(Recall that W © is the inverse of WR.)

As in the control problem, we do not solve the matrix representation of

the nth

Riccati operator equation directly because the matrix representation
of a selfadjoint operator in general is not symmetric. In the duality between
the optimal control and estimator problems, (8.5) and (8.8) correspond to
(4.26) and (4.38), respectively. 1In (4.39), we defined the symmetric matrix

~
I® = W and then obtained the Riccati equation (4.40) to solve for II .

We proceed in a similar fashion here, but with an interesting difference.

A A A
Sineejﬂ% and Qn are nonnegative selfadjoint operators on En andjﬂP and

A A
Qn are thelr matrix representations, the matrices anf‘and wQ? are nonnega-

tive and symmetric. Hence, the matrices

_ iy

%) 14

(8.11)

and
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m

A
Q" = twn
(8.12)
are nonnegative and symmetric. Substituting (8.11) and (8.12) into (8.7) and

(8.8) yields

~
A A
M - finemT 31

(8.13)
and
LY ~ ~ [ "~
A A A A
o - menT - e et » - o,
(8.14)
the Riccati matrix equation to be solved numerically in the nth approximation

to the infinite dimensional estimator. In view o1 the relationship between
(8.5) and (8.8) and the relationship between (8.8) and (8.14), we see that
Hypothesis 8.1 guarantees thes existence of a unique nonnegative symmetric

solution to (8.14).

To see ihe relationship between the matrices in (8.14) and the operators
in (8.5) more clearly —— and the difference between the current approximation
scheme and that used ia Section 4.2 for the control problem -— suppose that we
take @ = p_ 8] Let Q7 be defined as in (4.36) and (4.37) with Q, Q

n= EnQ En°® et efined as in . an . W 0’ & and

A ~ ~
Q2 replaced by QO' 01. and 02. Then

xQn = wn %’n won,
(8.15)
For example, if Q in the control problem and 6 in the estimator problem are
both equal to the identity, then the Q% in (4.35) - (4.42) is W an®
~
A _
Q® = W P, This may seem suspicious, but Subsection 8.2 should demonstrate ®
2
that we are solving the appropriate estimator problem here.
The only thing missing now for numerica) implementation of the nth
®
1
82
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estimator, or observer, is to give CB, the matrix representation of Cn‘ expli-

citly. We write

c? = [ch cM
172 (8.16)

n

where the p X n matrices Cl and C; are, respectively, the matrix representa-

tions of the operators C1 and C2 in (7.18). We can cover virtually all appli-

cations by assuming Cn= ClEn' in which case the :I.th

th

column of c;‘ is the p-

n

vector equal to C]ei, and the i~ column of 02 is the p-vector equal to Czei.

¥We now have the complete set of equations for numerical implementation of
the nth state egtimator: For online computation, the nth estimator, or
observer, is (8.6); the gain matrix ?‘n is given by (8.13) and the solution to
the Riccati matrix equation (8.14). The matricestn and C" are defined as

above.
8.2 Stochastic Interpretation of the Approximating Estimators

As we have said, our approximation theory for the optimal estimator is
based on approximation of the infinite dimensional Riccati equation, whose
structure is the same for both control and estimator problems, and the sto—-
chastic properties of the optimal estimator problem never enter our approxima-
tion theory. Furthermore, using only the deterministic setting above, we will
proceed, subsequently, to analyze the finite dimensional estimators and the
compensators based upon them. Nontheless, we should consider momentarily the
sequence of finite dimensional stochastic estimation problems whose solutions

are given by the equations of the preceding subsection.

First, recall how the covariance operator of a Hilbert space-valued ram
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dom variable is defined. The covariance operator of an E-valued random vari-

able w is the operator Q for which

F expected value (<z,0>.<%,0).}) = <Qz,Z2>., 2z, z ¢ E.
TR E (8.17)

(See [B1, C4]1.)

W

A
With Fn given by (8.4) and (8.5), (8.3) is the KalmanrBucy filter for the

system
z = A Z + Bu + o,
h n an n n (8.18)
y = Chu + Cozp *+ oo
(8.19)
A
o where wn(t) is an En-valued white noise process with covariance operator Qn

and wo(t) is an Rp-valued white noise process with covariance operator

A
(matrix) R. Next, careful' inspection will show that the filter defined by
(8.6), (8.13) and (8.14) is the matrix representation of the filter defined by

(8.3), (8.4) and (8.5).

With Z, and i melated as in (4.1) and (4.4), (8.18) and (8.19) are

equivalent to the system

n = A% + BN + (,

.20
(8 ) Y
y = Cqu + C'n + ag, ]

(8.21)
° where (/(t) 1is the Rzn—valued noise process related to mn(t) by P
.1
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n
"’n(t) = z (Ui(t)ei. (/i+n(t)ei).
1=1 (8.22)

Certainly, a Kalman-Bucy filter for (8.20) and (8.21) has the form (8.6) with
the filter gain given by (8.13) and (8.14). This particular filter is the
matrix representation of the filter defined by (8.3), (8.4) and (8.5) if and
only if the matrix 'én defined by (8.12) is the covariance of the process (/(t).
Since 3“ is the matrix representation of an' straightforward calculation using
(8.12) and (8.17) shows that the%n in (8.12) is indeed the correct covariance

matrix.

Of course, if w.(t) and (/(t) represent a physical disturbance to the
structure, then mn(t) must have the form (O,m:IZ)(t)) and the first n elements

of (/(t) must be zero, but this is not necessary for our analysis.

The finite dimensional observers can be interpreted now as a sequence of
filters designed for the sequence of finite dimensional approximations to the
flexible structure, with the nth approximate system disturbed by the noise
process wn(t). whose covariance operator is Sn. By Hypothesis 8.1, these
covariance operators converge to the operator 6 of Section 7. If we have a
reliable model of a stationary, zero—mean gaussian disturbance for the struc-
ture, then we can take the covariance operator for this discturbance to be 6

and think of the infinite dimensional observer as the optimal estimator. But,

agaln, this interpretation is not necessary for the rest of our analysis.

8.3 The Approximating Functional Estimator Gains

th

The n*" estimator gain operator in (8.4) has the same form as the infin

ite dimensional estimator gain in (7.15) and (7.20). We have
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m

~ P A
Fy = Z (£ in’gin)yi

(8.23)
A
for y = [yl Yy e yp ]T e RP, where the functional estimator gains rin and
A
gin are elements of Vn = Hn. The matrix F® in (8.7) and (8.13) is the matrix

AN
representation of Fn. which means that, if we write

£ f £
1 2 ... p
A B B B
P = g g 3
2 ...
B 1 ) g P
(8.24)
f g
where the columns B i, B i e R, then
A n fy
fin = J§153 5 L= Lewn
= (8.25a)
A n g
Sin = z Bjiej, i = l.onn,pa
J=1 (8.25b)

Vo)
For convergence analysis, it is useful to note that fin and gin are given
also by equations corresponding to (7.22). With the measurement operator C

written as in (7.19) and Cp = Clg » we have
n

2 P aq A A
in ~ ngm Vi3 MopPypesy + IpPyie,y s
B (8.26a)
.1
P A A A
A -1 .
fn = 2 Vg MypPypeyy + ThpPypes 9.
- (8.26b)
where
L)
A
A _ IL)n Hln
o, - & :
n n (8.27)
°
]
i
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8.4 Convergence

Now we will indicate the sense in which the finite dimensional
estimators/observers approximate the infinite dimensional estimator in Section

th estimator is based on (8.6),

7. As we have said, implementation of the n
(8.13) and (8.14), but convergence analysis is based on the equivalent system
(8.3), (8.4) and (8.5). The question then is how the observer in (8.3), with

gain given by (8.4) and (8.5), converges to the observer in (7.3) with gain

given by (7.15) and (7.16).

Recall Hypothesis 8.1, and recall from Section 4 that the approximations
to both the open1loop semigroup and its adjoint converge strongly. Also,
recall that Hypothesis 8.2 guarantees a unique nonnegative selfadjoint solu-
tion to the Riccati equation (8.5) for each n. Replacing An and Bn with A;

*
and Cn in Theorems 5.1 and 5.3, we obtain

N
Theorem 8.3. i) If || I]n ]| is bounded uniformly in n, then the Ricecati
A A
algebra‘c equation (7.16) has a nonnegative selfadjoint solution II and IL P

converges weakly to ﬁ i1) If there exist positive constants M and B,
independent of n, such that
Hexo(ia -ficlrlc 10l <« meP , t)o0,
(8.28)

then || ﬁn I{ is bounded uniformly in n, ﬁn PEn converges strongly toﬁ and
exp([An~ ﬁncgﬁ—lcn]t)PEn converges strongly to g(t). the semigroup generated
by A- ﬁC‘ﬁ-IC. the convergence uniform in t 2 0. {iii) If Gn is bounded away
from zero uniformly in n, then ”ﬁn” being bounded uniformly in n guarantees

the existence of positive constants M and B for which (8.28) holds for all n. O
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The proof of the following theorem is practically identical to that of

Theorem §.4.

A
Iheorem 8.4. If Q is E-coercive and d; = 0, then there is no nonnegative sel-

fadjoint solution of the Riccati operator equation (7.16), and

(8.29)
ng to state this obvious dual result is to point out

the following question. Can Theor 8.4 be modified to include the case where

em
A A
Q has the form (7.23) with Qo =0, Q

14

1= 0 and 62 coercive on H?

Next, we have the dual result to Theorem 5.6:

Iheorem 8.5 Suppose that Ay has an invariant subspace V, which is also imvari-

ant under the damping map AVIAD, that E; = V, x Vy is an observable subspace,
and that the restrictions of Ao and d0(°,') to V;' are both H-coercive. Also,
suppose that Vo has finite dimension ng and that, for each n 2 ng in the
approximation scheme, the first n, ei's span VO and the rest are orthogonal to

Vo in both V and H.

A A
i) Then (7.16) has nonnegative solution II, and || T, Il 1is bounded uniformly

in n, so that ﬁnPEn converges to ﬁ weakly.

A
ii) If E, and E(‘)" (the E-orthogonal complement of E,) are invariant under Q,
A
and if the Eo-part of the gystem (A,Q) is controllable, then the hypothesis of

Theorem 8.3 ii) holds.

Proof. The proof is practically identical to that of Theorem 5.6 with B

A
replaced by C.. For 1i), note that, when we partition A and Q as in (3.16),
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the finite dimensional system (A11'6‘11) is controllable if and only if the

A Py
system (Qn,An) is observabie. OJ

Remark 8.6. Remarks 5.7 and 5.8 pertain to Theorem 8.5 as well as to Theorem

5.6; i.e., in most applications the theorem requires either that both Ao and
d0 be coercive (so that Vo = {0}) or that the natural mode shapes be the basis
vectors and the damping not couple the natural modes. It seems unlikely that
a finite number of observable rigid-body modes could change the nature of the
convergence, but they greatly complicate the proofs. For applications where
both rigid-body displacement and rigid-body velocity are measured, a result
analogous to Theorem 5.9 can be obtained, but we will not bother here because
it adds no significant insight and we cannot use it in the example in Sections

6 and 10. Also, see Remark 10.1. [J

A A
Theorem 8.7. If qIPEn converges strongly toIl, then

117 Tilly =0
in Tl (8.30a)

g, -2l >0, as m—> =,
in  P1TH (8.30b)

A A
where f‘i and 'g\i are the functional estimator gains in (7.20) and fin and %in

are the approximating functional gains in (8.25).

Proof. The result follows from (7.22) and (8.26). [J
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9., The Finite Dimensional Compensators and Realizable Closed~loop Systems

9.1 Closing the Loop

The nt"h compensator consists of the nth approximation to the optimal con—

trol law in Section 4, applied to the output of the nt

Section 8; i.e., the feedback control

where

o]
I

1.
H—RBan

(recall (4.25)) and Z (t) is the solution to (8.3).

pensator can be written as

A
- F™y

<3
|

where

T
Flpt o

Fn

(recall (4.43)) and the 2n~vector R(t) is the solution to (8.6)).

N estimator/observer in

(9.1)

(9.2)

Equivalently, this com-

(9.3)

(9.4)

On—line com-

putations will be based upon the latter representation, and the block diagram

in Figure 9.1 shows the realizable closed-loop system that results from the

nth compensator.
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We will refer to this system as the ;f‘h closed-loop system.




z = Az + Bu

y=cou+Cz

Control System

H A
4 = (Ao + Bucpiec?)1f + Fly
(._l‘
n
un = - FM
ntB® Compensator
Figure 9.1 ntR Closed-loop System
This closed-loop System is equivalent to
z 4
. = A »
A ™, N A
Z Z
8 B (9.5)
where the operator
A [A -BFp ]
= |A A » D(Ao ) = D(AIXE
=»D F,c [A B Fy + Fp Cpl 0 n,

(9.6)
generates the closed-loop semigroup Smn(t) on EXE,. The closed-loop
response produced by the nth compensator —— 1.e., the response of the oth
closed-loop sSystem — can be written then as

z (t) z (0)
t z
n n (9.7)
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’m
|
P

.

Note that A_,, has compact resolvent if and only if A does.

9.2 Convergence of the Closed-loop Systems

Now we will consider the sense in which the ntB closed-loop system
approximates the optimal closed-loop system in Section 7 (Definition 7.3).
Recall from Sections 4.1 and 8.1 how the apmoximating open—loop semigroups
Tn(') and their adjoints converge strongly and how the input operators Bj,, the
measurement operators Cn and their respective adjoints converge in norm. Sec—
tions 5§ and 8 have given sufficient conditions for the approximating control
and estimator gains to converge to the gains for the optimal infin:te dimen-

sional compensator. In this section, we will assume

Hypothesis 9.1. As n — =,
IIF _po. - Fll—> O,
n“En (9.8)
A A
(9.9)

Remark 9.2. Of course, we are interested primarily in the case where the
gains F and F are the optimal 1QG gains in (7.15) and (7.17) and F_ ang ?'n are
the corresponding approximations in Sections 4 and 8 (i.e.,(9.2) and (8.4)).
However, for the anmalysis of this section, we need only Hypothesis 9.1 for
some F ¢ L(E,R), ? ¢ L(RP,E) and approximating sequences F,. and ?n. Any such
gain operators will yield closed-loop semigroup generators A_, in (7.9) and

A,,,in (9.6). O
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2

We denote the projection of E X E onto E % En by PEEn'

Theoreg 2.3. For t 20, S, (t)Ppp, converges strongly to S,.,(t), and the

convergence is uniform in t for t in bounded intervals.

Proof. This follows from the strong convergence of the open—loop semigroups

and the uniform norm convergence of the control and estimator gains. {J

We should expect at least Theorem 9.3, but we need more. We should
require, for example, that if S(t) is uniformly exponentially stable, then
S,.n(t) must be also for n sufficiently large. Although nuwerical results for
numerous examples with various kinds of damping and approximations suggest
that this is usually true, we have been unable to prove it in general. We do

have the result for the following important case.

Suppose that the basis vectors e, of the approximation scheme are the
natural modes of undamped free vibration and that the structural damping does

not couple the modes. Then, for each each n, E_ and E:'reduoe the openmr1loop

n
L )
semigroup T(t) and its generator A. For this case, we can extend Ac,n to DAY
D(A) as
A -BF_P
'K - A ~ D En e
='n F'nc AnCom
p (9.10)
where
~ ~ o
= - - 4
AnComp [An ByFa l-"ncn]PEn * A'l)(A)ﬂ En'
(9.11)
Note that E:'is the span of the modes not represented in the nt"h compensator.
®

~ ~
The operator A_ generates a semigroup S”,n(t) ~r EXE, EXE_ and

'n




- o —————

T T T T TR

L__gme

R ~ ~
{OIXE "reduce S, (t), and the restriction of S,, (t) to EXE 1s S, (t).
~
Hence S_, (t) is uniformly exponentially stable if and only if both Ser p(t)

and the part of the open—loop system on E:’ are uniformly exponentially stable.

Theorem 9.4. 1) Suppose that the basis vectors of the approximation scheme
are the natural modes of undamped free vibration and that the structural damp-
ing does not couple the modes. Then gﬁ.n(t) converges in norm to S_, (t),

uniformly in bounded t-intervals.

ii) If, additiomally, S_,_(t) is uniformly exponentially stable, then Sw,n(t)

is uniformly exponentially stable for n sufficiently large.

Proof. From (9.6), (9.10) and (9.11), we have

0 BIF _P. -F]
A, _'K - ~AA n En
®’'o> “o’pn [F_Fn]C An
(9.12)
where
A = (B_F.P_ ~BF) + (F.C_P_ -FC)
= - + - .
n nn En n'n En (9.13)
Therefore, “A,,,;i;-nll --> 0 as n ~-)>=, and the theorem follows. O

This paper emphasizes using the convergence of the approximating control
and estimator gain operators Fn and ‘En’ and the convergence of the functional
gains that can be used to represent these operators, to determine the finite
dimensional compensator that will produce essentially optimal closed-loop per—
formance. However, close examination of the right sides of (9.12) and (9.13)
reveals another important convergence question. While the gain convergence in
(9.8) and (9.9) drives the off-diagonal blocks in (9.12) to zero, the norm

convergence of the approximating input and output operators also is essential
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in killing A . Expanding the two terms in this block yields

B FP - BF = B(F P, ~F) + (B -B)F,

n' nEn n"n En n (9.14)
? A A A A

ncnPEn - FC = (Fn_F)CnPEn + F(CnPEn_C)‘ (9.15)

The second term on the right side of each of these equations represents,
respectively, control and observation spillover, which has been studied exten
sively by Balas. Together, the control spillover and observation spillover
couple the modes modelled in the compensator with the modes not modelled in
the compensator. The spillover must go to zero —— as it does when Bn and cn

~
converge -~ for Aw'm - A, , to g to zero.

We should ask then whether there exists a correlation between the con
vergence of Fn and 311 and the elimination of spillover. The answer is yes if
no modes lie in the null space of the state weighting operator Q in the per-
formance index and if the assumed process noise, whose covariance operator is
6. excites all modes, but this correlation is difficult to quantify. As we
discussed in Section 6.4, the two main factors that determine the convergence
rates of the gains are the Q-to-R ratio and the damping, neither of which
affects the convergence of Bn and Cn' On the other hand, when either factor
(small Q/R or large damping) causes the gains to converge fast, it generally
also causes the magnitude of F and '!-: to be relatively small, thereby reducing
the magnitude of the spillover terms in (9.14) and (9.15). Also, as n
increases, the increasing frequencies of the truncated modes usually reduce
the coupling effect of spillover. This is well known, although it cannot be
seen from the equations here. In examples that we have worked, we have found

that when n 1is large enough to produce convergence of the control and

estimator gains, the effect of any remaining spillover is negligible. But

this may not always be true, and spillover should be remembered.
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9.3 Convergence of the Compensator Transfer Functions

The transfer function of the nth compensator (shown in the bottom block
of Figure 9.1) is
& (s) ==F (sI - [A-BF 4? (CqF. ~C )])-IQ
n'8) =TFp's p °nn  n'“0"n “n n’
(9.16)
which is an m X p matrix function of the complex variable s for each n, as is
the similar transfer function &(s) in (7.14) for the infinite dimensional com-

pensator. We continue to assume Hypothesis 9.1.

We will denote the resolvent set of [A—BF#?(COF—C)] by

p([A—BF#?(cop_c)]),

Iheorem 9.35. There exists a real number a; suych that, if Re(s) > a;, then s e

A
P([An-Bn Fp*F(CoF-C)1) for all n, and 2,(s) converges to 2(s), uniformly in

compact subsets of such s.

Proof. The operator [A‘BF+?TCOF—C)] is obtained from a contraction semigroup
generator by perturbation with bounded operators, and the approximations to
the perturbing operators are bounded in n, by strong convergence. In view of
this, close examination of the basic approximation scheme in Section 4.1 will
show that there exists a bound of the form MlexP(alt)’ independent of n, for
the semigroups generated by [An—Bn Fn;%n(Can—Cn)]. Also, these semigroups
converge strongly to the semigroup generated by [A—BF+$(COF-C)], according to
[G3, Theorem 6.6]. For Re(s) > a, ther, the resolvent operator in ¢ (s) con-
verges strongly to that in &(s), uniformly in compact s-subsets, by [Kl, page

504, Theorem 2.16, and page 427, Theorem 1.2]. J
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This result leaves much to be desired. For example, it does not guaran—
tee that any subset of the imaginary axis will lie in
A
p([A -B F +F (CoF - C,)}) for sufficiently large n, even if all of the ima-

A
ginary axis lies in p([A-BF+F(CyF-C)]). As with the convergence of the

closed-loop systems, we can get more for certain important cases.

Remark 9.6. If the open—loop semigroup T(¢) (whose generator is A) is an ana-
lytic semigroup, then there exist real numbers a, & and M, with 8 and M posi-

tive, such that p([A—BF+9(CoF-C)]) contains the sector {s:larg(s-a)l< % + 8},

and for each s in this sector,

11 (I~ [A-BFR (CoF-O) LN ¢ W/ )s-al
(9.17)

E’

9.7. 1i) If the basis vectors of the approximation scheme are the
natural modes of undamped free vibration and the structural damping does not
couple the modes, then each s in p([A—BF+?‘(CoF—c)]) is in
P([An—BnFn+?n(Can-Cn)]) for n sufficiently large and 2,(s) converges to 2(s)
as n —) @ , uniformly in compact subsets of p([A—BF+?(C0F-c)]), i1) If,
additionally, T(¢) is an analytic semigroup, then Bn(s) converges to 2(s) uni-

formly in the sector described in Remark 9.6.

Proof. 1) In this case, we have also

8 (s) = Fopp (I - o) F

n'S8’ = FpPEp's nComp n’ (9.18)
where TnComp is the operator on D(A) defined by (9.11). The result follows
from (9.8) and (9.9) and the fact that ‘KnComp converges in norm to

A
[A-BF+F(CyF-C)1. 11i) The result follows from i) and a bound on

~ -
(SI-AnComp) 1 for large |s| that is obtained from the Neumann series in view
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~
of (9.17) and the uniform-norm convergence of AnComp'

Theoren 9.8. If A has compact resolvent, then & (s) converges to 2(s) for

A
each s e p([A-BF+F(C,F-C)]), uniformly in compact subsets.

Proof. As a result of Theorem 4.4, the resolvent operator in En(s) converges

in norm to the resolvent operator in &(s) for sufficiently large real s.

After an artificial extension of A to E, then, the present theorem follows

from [X1, pages 206-207, Theorem 2.25].
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10. Closing the Loop in the Example

As in Definition 7.3, the optimal closed-loop system is formed with the
optimal infinite dimensional compensator, which consists of the optimal con-
trol law for the distributed model of the structure applied to the output of
an optimal infinite dimensional state estimator. This optimal control law is
the 1imit of the approximating finite dimensional control laws in Section 6.
In this section, we first approximate the infinite dimensional estimator, as
in Section 8, and then apply the approximating control laws in Section 6 to
the approximating finite dimensional estimators to produce a sequence of fin-

ite dimensional compensators that approximate the optimal compensator.

10.1 The Estimator Problem

We assume that the only measurement is the rigid-body angle © and that
this measurement has zero—mean Gaussian white noise with variance ? = 1074,
We model the process noise as a zero—-mean Gaussian white disturbance that has
a component distributed uniformly over the beam, as well as two concentrated

components that exert a force on the tip mass and a moment on the hub. For

A A
this disturbance, the covariance operator Q has the form (7.23) with Q0= 0,

A
61=OandQ2=I.

We construct the approximating estimators as in Section 8.1. The gain
for the n'P estimator is given by (8.13) with the solution to the Ricecati

matrix equation (8.14). For the rigid-body measurement, the matrix CP is

¢c=11000...].
(10.1)
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x
According to (8.15), the matrix QP is

0 M B

since WP is the matrix in (4.33). (As always, M P is the inverse of the mass

(10.2)

matrix.) Recall from Section 6.3 that n = Zne + 1 where n, is the number of

el ements.

Our only use for the functional estimator gains is to measure the conver-
gence of the finite dimensional estimators to the optimal infinite dimensional
estimator. To see the convergence of the approximating estimator gains, we
compute the approximating functional estimator gains as in Section 8.3. Like

the functional control gains, the functional estimator gains have the form

A
f = (a.r,gsf,pf) ,

(10.3a)
A
g€ = (a6, By
e'"e."e) (10.3b)
and the corresponding approximations have the form
? ( )
= a,. ,¢_,B N
" fn'"gn’"gn (10.4a)
A
8 = (a !¢ !B ) .
n gn""gn""gn (10.4b)
Remark 10.1 We cannot guarantee as much abcut convergence for the approximat-

ing estimators as we could for the approximating control problems in Section
6. Since the damping in this example does not couple the natural modes and
the rigid-body mode is observable, we would have Part i) of Theorem 8.5 if we

were using the nmatural mode shapes as basis vectors. Therefore, we know at
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least that a solution to the infinite dimensional Riccati equation (7.16)
exists and that the infinite dimensional estin.tor that we want to approximate
exists. The numerical results indicate that the solutions to the finite
dimensional Riccati equations are bounded in n and that the functional esti-
mator gains converge in norm. The rigid-body mode prevents our guaranteeing a
priori all the convergence that we want. If a torsional spring and damper
were attached to the hub in the current example, we would have coercive stiff-
ness and damping and Theorem 8.5 ii) would guarantee that the solutions to the
finite dimensional Riccati equations converge strongly and that the functional
estimator gains converge in norm for the basis vectors used here. Also, see

Remark 6.2 and Remark 8.6. [J

4

For damping coefficient Cy = 10 ¥, Figures 10.1 and 10.2 show ¢;; and ¢8n' and

Tables 10.1 and 10.2 list the the scalars af‘n'“gn and agn' Since ¢f‘n(°)
¢t"n(0) = 0, the convergence of ¢;.; implies the convergence of Bf‘n = ¢fn(f);
as in the control problem, B, is not an independent piece of information
about the estimator gains while, as far as our results go, agn is. We main-
tain analogy with the control problem and list only ﬁgn in the table.
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e %rn %2n Bgn

2 5.0358 12.680 -~1334.9
3 5.2514 13.789 -1455 .4
4 5.3195 14.149 -1495.7
5 5.3478 14.300 -1512.2
8 5.3611 14.371 -1520.1

Table 10.1. Scalar Components of Functional Estimator Gains

Damping coefficient o = 10"4 ; estimator R = 10_4

number of elements n, = 2,3,4,5, 8
e %rn %zn Ben
4 5.3195 14.149 -1495.7
6 5.3567 14 .347 -1517.5
8 5.3611 14.371 ~1520.1
10 5.3623 14.3717 -1520.8

Table 10.2. Scalar Components of Functional Estimator Gains

4 4

Damping coefficient ¢, = 10°7; estimator R = 10~

number of elements n, = 4, 6, 8, 10
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Figures 10.3a and 10.3b and Table 10.3 give the numerical results for the fin-
ite dimensional estimators when the structural damping is zero. While Theorem
8.4 says that the solutions to the finite dimensional Riccati equations for
these estimators will not converge when the damping is zero and 6 is coercive

A
on E, we have no result to predict the convergence for zero damping when Q is

A
not coercive (even though Q, is coercive on H). From the numerical results

A
though, fn does not appear to converge.

Ne %fn %n
2 5.0730 12.868
3 5.3390 14 .253
4 5.4417 14 .806
5 5.4894 15.067
8 5.5398 15.345

-1354 .4
-1506.0
-1568.0
-1596 .3
-1627.2

Table 10.3. Scalar Components of Functiondl Estimator Gains

Zero damping; estimator R =.10"4

A

mm%rne=2,3,4.5.8
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10.2 Approximation of the Optimal Compensator

Finally, for the damping co = 10—4. R = .05 in the control problem and R

= 10~4 in the estimator problem, we construct the finite dimensional compensa-
tor in Figure 9.1; i.e, for each n = 2ne + 1, we apply the ngh control law
represented by the functional gains in Figure 6.4 and Table 6.4 to the output

of the n“’l

o estimator represented by the functional gains in Figure 10.2 and

Table 10.2. As the number of elements increases, the transfer function in
{9.16) of the finite dimensional compensator converges to the transfer func-
tion in (7.14) of the optimal infinite dimensional compensator, as described
in Section 9.3. Theorem 9.5 and Remark 9.6 apply. Figure 10.4 shows the fre-
quency response (bode plots) of the finite dimensinnal compensators for 4, 6,
8 and 10 elements. The phase plot is for 10 elements only. These plots indi-
cate that the finite dimensional compensator for eight or more elements is
virtually identical to the optimal infinite dimensional compensator, as

predicted by the functional gain convergence in Figures 6.4 and 10.2.
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10.3 Comments on the Structure and Dimension of the

Implementable Compensators

Though this paper does not address the problem of obtaining the lowest-

order compensator that closely approximates the infinite dimensional compensa-

tor, we should note that the compensators based on eight and ten elements here
are unnecessarily large because the finite element scheme that we chose is not
nearly the most efficient in terms of the dimension required for convergence.
(The dimension of the first-order differential equation in the compensator is
2(2ne+1).) We used cubic Hermite splines here to demonstrate that the finite
element scheme most often used to approximate beams in other engineering
applications can be used in approximating the optimal compensator. In [GS5],
we compare the present scheme with one using cubic B-splines and one using the
natural mode shapes as basis vectors. The natural mode shapes yield the
fastest converging compensators, but the B-splines are almost as good. The
only advantages of the Hermite splines result from the fact that the coding to
build the basic matrices (mass, stiffness, etc.) is simpler than for B-splines
and the fact that, before the Riccati equations based on, say, ten natural
modes are solved, a much larger finite element approximation of the structure

must be used to get the ten modes accurately.

To understand the redundancy in the large finite dimensional compensators

here, it helps to consider the structure of the optimal compensator. It is
based on an infinite dimensional state estimator that has a representation of
each of the structure’s modes. In the present example, the optimal compensa- ) .1
tor estimates and controls the the first six modes significantly, the next
three modes slightly, and virtually ignores the rest. This observation is

*
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based on the projections of the functional gains onto the natural modes and on
comparison of the opemloop and closed-loop eigenvalues. (See [G5] for more
detail, including the spectrum of closed-loop system -- which is stable —-
obtained with the temelement compensator here.) The infinite dimensional
compensator then has an infinite number of modes that contribute nothing to
the input-output map of the compensator. These inactive modes are just copies
of all the opemloop modes past the first nine. They can be truncated from
the compensator without affecting the closed-loop system response signifi-
cantly. The number of active modes in the compensator —— i.e., the modes that
contribute to the input-output map -- depends on the structural damping and
the Q's and R’s in the LQG problem statement. (See the discussion in Section

6.4 about the effect of damping and control weighting on performance.)

The compensator computed here based on ten elements has 21 modes
(although we did not do the computations in modal coordinates). Nine of these
compensator modes are virtually identical to the nine active modes in the
infinite dimensional compensator, and the twelve inactive modes are approxima-
tions to the tenth through twenty—-first openloop modes of the structure. The
inactive modes result from the large number of elements needed to approximate
the active compensator modes accurately. Now that we essentially have the
optimal compensator in the tem element compensator, we could truncate the
twelve inactive modes and implement a compensator with nine modes. And we
probably could reduce the compensator even further using an order reduction

method 1like balanced realizations.
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11. Conclusions

For the deterministic linear—quadratic optimal regulator problem for a
flexible structure with bounded input operator (the BO in (2.1)), the approxi-

mation theory in Sections 4 and 5 is reasonably complete. The most important

extensions should be to the corresponding (very difficult) problem with
unbounded input operator, for which there exists little approximation theory.
Because of the different kinds of boundary input operators, stiffness opera-
tors and structural damping, all of which must be considered in detail when B0
is unbounded, it seems unlikely that the approximation theory for the

unbounded-input case can be made as complete as the theory here.

The convergence results in Section 8 for the estimation problem are less
complete than those for the control problem because rigid-body modes present
more technical difficulties for the proofs in the estimator case. However,
our analysis and numerical experience suggest that the difficulties only make
the proofs harder and that the convergence in the estimation problem is ident-
ical to the convergence in the control problem, and that controllable and

observable rigid-body modes make no qualitative difference in either problem.

Where we would most like substantial improvement over the results of this
paper is in Section 9.2, which considers how the approximating closed-loop
systers obtained by controlling the distributed model of the structure with

the finite dimensional compensators converge to the optimal closed-loop sys—

tem., obtained with the infinite dimensional compensator. Theorem 9.4 gives us
what we want for problems where the damping does not couple the natural modes

of free vibration and the natural mode shapes are the basis vectors for the
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approximation scheme. In particular, this theorem says that, if the optimal
closed-loop system is uniformly exponentially stable, then so are the approxi-
mating closed-loop systems for sufficiently large order of approximation. We
have verified numerically the stability of the approximating close—loop sys—
tems for the example in Sections 6 and 10, where the basis vectors are not the
modes. This example and others have made us suspect that Theorem 9.4 is true
when the basis vectors satisfy Hypothesis 4.1 only and when the damping cou-

ples the modes.

Another possible approach to analyzing the convergence of the approximat-
ing closed-loop systems to the optimal closed-loop system is to use the
input-output description in frequency domain. Results like those in Section
9.3 are useful for this, although for the closed-loop stability we want, we
probably need the transfer functions of the finite dimensional compensators to
converge more uniformly on the compensator resolvent set than we have proved
here. In our example, Figure 10.4 indicates that these transfer functions
converge uniformly on the imaginary axis, but we have no theorem that guaram

tees this.
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APPENDIX
Errata for [Gl]

In the first paragraph of the proof of Theorem 2.1 on page
689 of (Gl], the first sentence should be:

If a dissipative operator is invertible, its inverse is

dissipative,
At the beginning of the fifth line of the same paragraph, the
expression (ax+y) should be deleted the first time it occurs.
The next-to-last sentence of the paragraph should be:

Hence, if a densely defined maximal dissipative operator has

dense range, its inverse is maximal dissipative.
The theorem is correct as stated.

In the current paper, we use Theorem 2.1 of [Gl] to conclude
that the operator A defined in Section 2 is maximal dissipative (see
(2.10)-(2.12)) and that the operator Z in (2.16) has a unique maximal

dissipative extension.
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